Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau
=> n sẽ không chia hết cho 2 hoặc 5
=> n là số lẻ
Đặt n = 2k+1 (k là số tự nhiên)
=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)
Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)
= 2k(2k+2)(4k2+4k+2)
= 8k(k+1)(2k2+2k+1) chia hết cho 8
=> n4-1 chia hết cho 8 (1)
Ta lại đặt n = 5k+1 (k lẻ)
=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)
= 5k(5k+2)(25k2+10k+1) chia hết cho 5
=> n4-1 chia hết cho 5 (2)
Từ (1) và (2) => \(n^4-1⋮8.5=40\)
Vậy \(n^4-1⋮40\)
Mk k chắc bài mk làm đúng nhé!
cmr với mọi n thuộc N; n>1 thỏa mãn \(n^2+4\) và \(n^2+16\) là các số nguyên tố thì n chia hết cho 5
+, Nếu n chia 5 dư +-1 thì :
n^2 chia 5 dư 1 => n^2+4 chia hết cho 5
Mà n^2+4 > 5 => n^2+4 là hợp số
+, Nếu n chia 5 dư +-3 thì :
n^2 chia 5 dư 4 => n^2+16 chia hết cho 5
Mà n^2+16 > 5 => n^2+16 lừ hợp số
=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5
Tk mk nha
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)