Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số lẻ liên tiếp là a;a+2
Gọi ƯCLN (a;a+2) =d
=> a chia hết cho d ; a+2 chia hết cho d
=> a+2 - a chia hết cho d
=> 2 chia hết cho d => d= 1;2
Vì a là số lẻ => a không chia hết cho 2
=> d= 1
=> ƯCLN (a;a+2) = 1
=> Hai số lẻ liên tiếp nguyên tố cùng nhau
b)
Gọi ƯCLN(n+1;3n+4) = d
=> n+1 chia hết cho d; 3n+ 4 chia hết cho d
=> 3.(n+1) chia hết cho d; 3n+4 chia hết cho d
=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d
=> (3n+4) - ( 3n+3) chia hết cho d
=> 1 chia hết cho d => d= 1
=> ƯCLN(n+1;3n+4) =1
=> n+1 và 3n+4 nguyên tố cùng nhau
c) Trong câu hỏi tương tự có nhé bạn !
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2016^2}\)
\(\frac{1}{2^2}<\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)
...........
\(\frac{1}{2016^2}<\frac{1}{2015\cdot2016}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2016^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2015\cdot2016}\)
\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A<\frac{1}{1}-\frac{1}{2016}\)
\(\Rightarrow A=\frac{2015}{2016}\)
\(\Rightarrow A<1\) (1)
\(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
........
\(\frac{1}{2016^2}>0\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2016^2}>0+0+.......+0\)
\(\Rightarrow A>0\) (2)
Từ (1) và (2):
\(\Rightarrow\)0<A<1
\(\Rightarrow\)A không là số tự nhiên