\(n^{2014}\)+ 1 ko phải số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

 

 

 

 

 

= 10^10 + 8

 

 

 

A=10^10+8


= 10.....0 +8

= 100.....08

vì A có tận cùng là 8

Vậy 10^10 + 8  không phải là số chính phươngt

 

7 tháng 7 2015

Làm hết từng đó chắc chết mất !

9 tháng 11 2015

Gọi 2 số lẻ liên tiếp là a;a+2

Gọi ƯCLN (a;a+2) =d

=> a chia hết cho d ; a+2 chia hết cho d  

=> a+2 - a chia hết cho d 

=> 2 chia hết cho d => d= 1;2 

Vì a là số lẻ => a không chia hết cho 2 

=> d= 1

=> ƯCLN (a;a+2) = 1

=> Hai số lẻ liên tiếp nguyên tố cùng nhau 

b) 

Gọi ƯCLN(n+1;3n+4) = d

=> n+1 chia hết cho d; 3n+ 4 chia hết cho d  

=> 3.(n+1) chia hết cho d; 3n+4 chia hết cho d 

=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d 

=> (3n+4) - ( 3n+3) chia hết cho d 

=> 1 chia hết cho d => d= 1

=> ƯCLN(n+1;3n+4) =1

=> n+1 và 3n+4 nguyên tố cùng nhau 

c) Trong câu hỏi tương tự có nhé bạn ! 

29 tháng 3 2017

mk chịu , bó tay nhập y tế

25 tháng 4 2017

A ko thuộc N

6 tháng 5 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2016^2}\)

\(\frac{1}{2^2}<\frac{1}{1\cdot2}\)

\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)

...........

\(\frac{1}{2016^2}<\frac{1}{2015\cdot2016}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2016^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2015\cdot2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2016}\)

\(\Rightarrow A=\frac{2015}{2016}\)

\(\Rightarrow A<1\)    (1)

\(\frac{1}{2^2}>0\)

\(\frac{1}{3^2}>0\)

........

\(\frac{1}{2016^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2016^2}>0+0+.......+0\)

\(\Rightarrow A>0\)       (2)

Từ (1) và (2):

\(\Rightarrow\)0<A<1

\(\Rightarrow\)A không là số tự nhiên