Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi d là ƯCLN của 21n+1 và 14n+3
Ta có:
21n+1 chia hết cho d
=>42n+2 chia hết cho d
14n+3 chia hết cho d
=>42n+9 chia hết cho d
=>42n+9-42n-2 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)={1;7}
=>21n+1/14n+3 là phân số tối giản
2)Gọi số cần tìm là a(a nhỏ nhất)
Theo bài ra ta có;
a-5 chia hết cho 29
a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{\text{2. (4n+3) + 187}}{\text{4n + 3 }}=2+\frac{187}{4n+3}\)
⇒187 ÷ 4n + 3⇒4n + 3 ∈ Ư (187) = {17;11;187}
+ 4n + 3 = 11 => n = 2
+ 4n +3 = 187 => n = 46
+ 4n + 3 = 17 => 4n = 14 ( loại )
Vậy n = 2 và 46
B) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A ≠ 187
=> n ≠ 11k + 2 (k ∈ N)
=> n ≠ 17m + 12 (m ∈ N )
c) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61
a ) Để A có giá trị là số tự nhiên
=> A thuộc N
=> 8n + 193 \(⋮\)4n + 3
=> 8n + 6 + 187 \(⋮\)4n + 3
=> 2 . ( 4n + 3 ) + 187 \(⋮\)4n + 3 mà 2 . ( 4n + 3 )\(⋮\)4n + 3 => 187 \(⋮\)4n + 3
=> 4n + 3 thuộc Ư ( 187 ) = { - 17 ; - 11 ; - 1 ; 1 ; 11 ; 17 }
Lập bảng tính giá trị n :
4n + 3 | - 17 | - 11 | - 1 | 1 | 11 | 17 |
n | - 5 | / | - 1 | / | 2 | / |
Thử các giá trị của n ta thấy chỉ có mỗi giá trị n = 2 thì thỏa mãn đề bài
Gọi \(ƯCLN\left(n,n+2\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+2\right)-n⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1,2\right\}\)
Với \(d=2\) thì do d là ước của n nên 2 là ước của n. Thế nhưng n là số lẻ (do n chia 4 dư 3) nên ta thấy vô lí.
Vậy \(d=1\) hay \(ƯCLN\left(n,n+2\right)=1\). Do đó phân số \(\dfrac{n}{n+2}\) là phân số tối giản khi n chia 4 dư 3.