K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 1 2022

Đặt \(d=\left(n+1,n^2+1\right)\)

Suy ra 

\(\hept{\begin{cases}n+1⋮d\\n^2+1⋮d\end{cases}}\Rightarrow\left(n^2+1\right)-\left(n-1\right)\left(n+1\right)=2⋮d\)

Mà \(n+1\)là số lẻ do \(n\)chẵn nên \(d\)là số lẻ suy ra \(d=1\).

DD
15 tháng 1 2022

Đặt \(d=\left(3n+2,2n+1\right)\).

Suy ra 

\(\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)=1⋮d\Rightarrow d=1\)

Suy ra đpcm. 

18 tháng 11 2017

 Câu trả lời hay nhất:  Gọi d = (12n + 1 , 30n + 2) 
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d 
=> 5(12n + 1) - 2(30n + 2) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

25 tháng 1 2015

Gọi ƯCLN 2 số trên là a

2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)

 3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)

tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a

=> 1 chia hết cho a

=>a=1

vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau

 

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

25 tháng 3 2021

đừng để anh nóng hơi mệt đấy

4 tháng 12 2016

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

2 tháng 12 2017

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

29 tháng 12 2021

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

30 tháng 10 2023

TÔI KO BIẾT

 

25 tháng 11 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)

=> 2n+1 chia hết cho a; 3n+1 chia hết cho a

=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a

=> 6n+3 chia hết cho a; 6n+2 chia hết cho a

=> (6n+3)-(6n+2) chia hết cho a

=> (6n-6n)+(3-2) chia hết cho a

=> 1 chia hết cho a

=> a=1 

=> UWCLN(2n+1;3n+1)=1

=> 2n+1 và 3n+1 nguyên tố cùng nhau

Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

12 tháng 12 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)
=> 2n+1 chia hết cho a; 3n+1 chia hết cho a
=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a
=> 6n+3 chia hết cho a; 6n+2 chia hết cho a
=> (6n+3)-(6n+2) chia hết cho a
=> (6n-6n)+(3-2) chia hết cho a
=> 1 chia hết cho a
=> a=1
=> UWCLN(2n+1;3n+1)=1
=> 2n+1 và 3n+1 nguyên tố cùng nhau
Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

chúc bn hok tốt @_@