K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

n là số nguyên tố lớn hơn 3 => n không chia hết cho 3 => n2 chia 3 dư 1

Mà 2012 chia 3 dư 2 => n2 + 2012 chia 3 dư 3 hay chia hết cho 3

Hiển nhiên nó cũng lớn hơn 3 nên là hợp số

16 tháng 2 2016

hợp

6 tháng 5 2015

đây mà toán lớp 1 á , toán lớp 6 thì có

6 tháng 5 2015

kokomy 45 phút trước

đây mà toán lớp 1 á , toán lớp 6 thì có

 Đúng 1 cao viet quang đã chọn câu trả lời này.

phí ngọc huyền 11 phút trước

Pạn ơi đương nhin phải là hợp số

Vì:

Gọi n là số nguyên tố 

+ Các số nguyên tố mũ  2 đều là hợp số vì nó chia hết cho n , chính nó , 2 ( vì là hợp số )và 1

+ MÀ các hợp số =2012 là số chẵn 

=> Số đó chia hết cho 2 nữa

Vậy chúng ta kết luận Số đó là hợp số nhá

 Đúng 0

cao viet quang 31 phút trước

LÀM VẬY CHO HAY???????

????????????????????????????????????????????????????????????????????

12 tháng 1 2016

p là số nguyên tố nhỏ hơn 3 => p = 2 

Thay vào p = 2

Ta có 2^2 +2012 

= 4 + 2012

= 2016

mà 2016 là hợp số

Vậy p^2 + 2012 là hợp số

12 tháng 1 2016

p là số nguyên tố nhỏ hơn 3 =>p=2

=>2^2+2012=4+2012=2016 là hợp số

12 tháng 2 2016

Là hợp số nha bn

16 tháng 11 2016

Là hợp số đó

4 tháng 3 2016

Vì n là số nguyên tố lớn hơn 3 nên

=>n^2 chia 3 dư 1

=>n^2+2006=3k+1+2006=3k+2007

(3k+2007)chia hết cho3

3k+2007>3

=> 3k+2007 là  hợp số

Hay n^2+2006 là hợp số

4 tháng 3 2016

thì bạn ví dụ số n là số nguyên tố nào đó lớn hơn 3 rồi sau đó thay vào biểu thức là xong

Theo mình nghĩ là số nguyên tố

16 tháng 4 2020

brabla

16 tháng 4 2020

b) n mũ 2 + 2006 là hợp số

hai câu còn lại ko bt

Hok tốt

^_^

23 tháng 3 2020

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

23 tháng 3 2020

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

31 tháng 1 2018

do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1

Ta có:n^2+2018=3k+1+2018=3k+2019

do 3k chia hết cho 3,2019chia hết cho 3

nên 3k+2019 là hợp số hay n^2+2018 là hợp số

Vậy không có số nguyên tố n nào thỏa mãn đề bài 

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

22 tháng 4 2018

Vì n là số nguyên tố lớn hơn 3 nên nchia cho 3 dư 1.

=> n2 có dạng 3k+1

=>n2+2006=3k+1+2006=3k+2007

Vì 3k chia hết cho 3

2007 chia hết cho 3

=> 3k+1+2006 chia hết cho 3

=>n2+2006 chia hết cho 3 nên nó là hợp số