K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)

=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
 + ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23 

29 tháng 5 2017

+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)

29 tháng 5 2017

vì N là 1 số tự nhiên lẻ

\(\Rightarrow24^n\)có chử số tận cùng là 24

\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)

bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)

29 tháng 7 2016

242+1=(24+1)(24-1)

25.23

25chia het cho 25 

suy ra 25.23 chia hetcho 25

29 tháng 7 2016

ma cho mk hoi n o dau vay

24^n+1=(24+1)*A=25*A chia hết cho 25

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

28 tháng 7 2023

\(A=n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Tich trên là tích của 3 số tự nhiên liên tiếp

\(\left(n-1\right)n\left(n+1\right)⋮24\) khi đồng thời chia hết cho 3 và 8

+ C/m tích trên chia hết cho 3

Nếu \(n⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow A⋮3\)

\(\Rightarrow A⋮3\forall n\)

C/m tích trên chia hết cho 8

Do n là số tự nhiên lẻ

Nếu \(n=1\Rightarrow A=0⋮8\)

Nếu \(n\ge3\) => (n-1) và (n+1) chẵn

Đặt \(n=2k+1\left(k\ge1\right)\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=\)

\(=2k\left(2k+1\right)\left(2k+2\right)=\left(4k^2+2k\right)\left(2k+2\right)=\)

\(=8k^3+8k^2+4k^2+4k=8\left(k^3+k^2\right)+4k\left(k+1\right)\)

Với k chẵn đặt \(k=2p\Rightarrow4k\left(k+1\right)=8p\left(2p+1\right)⋮8\)

\(\Rightarrow A=8\left(k^3+k^2\right)+8p\left(2p+1\right)⋮8\)

Với k lẻ đặt \(k=2p+1\Rightarrow4k\left(k+1\right)=4\left(2p+1\right)\left(2p+1+1\right)=\)

\(4\left(2p+1\right)2\left(p+1\right)=8\left(2p+1\right)\left(p+1\right)⋮8\)

\(\Rightarrow A⋮8\forall n\)

\(\Rightarrow A⋮3x8\forall n\Rightarrow A⋮24\forall n\)