Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
n=12+13=25
25:1;25:5
Nhưng: 25 không chia hết cho 2; cho 4; cho 6; cho 8; cho 10;...
n ko chia hết cho 3 nên n=3k+1
n^2=(3k+1)^2=9k^2+6k+1=3k(3k+2)+1
3k(3k+2) chia hết cho 3
1 không chia hết cho 3
vậy n^2 chia cho 3 dư 1
vì n là số nguyên tố không chia hết cho 3 => khi chia n cho 3 ta có 2 dạng: n=3k+1 hoặc n= 3k+2 (k\(\in\) N )
*) xét n=3k+1 => n2=(3k+1)2=(3k+1).(3k+1)=(3k+1).3k+(3k+1).1
=9k2.3k+3k+1
= 3.(32+k+k) +1 chia 3 dư 1.(1)
*) xét n=3k+2. => n2=(3k+2)2=(3k+2).(3k+2) = (3k+2).3k+(3k+2).2
=9k2+6k+6k+4=9k2+6k+6k+3+1
=3.(3k2+2k+2k+1)+1 chia 3 dư 1. (2)
từ (1) và (2) => n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.
vậy n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.(đpcm)
chúc bạn năm mới hạnh phúc. k mình nha.
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n 2 = (3k +1).(3k +1) = 9k 2 + 6k + 1 = 3.(3k 2 + 2k) + 1 => n 2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n 2 = (3k +2).(3k+2) = 9k 2 + 12k + 4 = 3.(3k 2 + 4k +1) + 1 => n 2 chia cho 3 dư 1
Vậy...
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
giải rõ nha bạn