Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số giao điểm là:
\(\dfrac{60\cdot59}{2}=30\cdot59=1770\left(gđ\right)\)
b: Số giao điểm là \(\dfrac{n\left(n-1\right)}{2}\)
c: Theo đề, ta có: n(n-1)/2=780
=>n2-n-1560=0
\(\text{Δ}=\left(-1\right)^2-4\cdot\left(-1560\right)=6241\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}n_1=\dfrac{-1-79}{2}=\dfrac{-80}{2}=-40\left(loại\right)\\n_2=\dfrac{-1+79}{2}=39\left(nhận\right)\end{matrix}\right.\)
a làm tắt e tự trình bài nhé có j hỏi a
\(\dfrac{n.\left(n-1\right)}{2}=780\Leftrightarrow n\left(n-1\right)=1560=40.39\\ \Rightarrow n=40\)
um em có í kiến là mik chênh lệnh có 1,2 tuổi thì mik có thể xưng hô bạn bè được ko ạ
Mỗi đường thẳng cắt 100 đường thẳng còn lại nên tạo nên 100 giao điểm. Có 101 đường thẳng nên có 101. 100 giao điểm, nhưng mỗi giao điểm đã được tính hai lần nên chỉ có :
101. 100 : 2 = 5050 (giao điểm).
Mỗi đường thẳng cắt 100 đường thẳng còn lại nên tạo nên 100 giao điểm. Có 101 đường thẳng nên có 101. 100 giao điểm, nhưng mỗi giao điểm đã được tính hai lần nên chỉ có :
101. 100 : 2 = 5050 (giao điểm).
Chú ý : Tổng quát với n đường thẳng , có \(\frac{n\left(n-1\right)}{2}\) giao điểm.
Một đường thẳng cắt 2005 đường thẳng còn lại tạo ra 2005 giao điểm mà có 2006 đường thẳng => có 2005 x2006 giao điểm nhưng mỗi giao điểm đc tính 2 lần . Số giao điểm thực tế là :
2006 x 2005 : 2 = 2011015 ( giao điểm )
Tôi nghĩ là có 1024 đường thẳng
Bạn thử vẽ ba đường thẳng theo đúng dự kiện đề bài.
Kết quả cũng được 3 giao điểm.