K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 6 2021

Ta chỉ cần đếm số cách chọn hai điểm bất kì trong số \(n\)điểm phan biệt thuộc đường thẳng \(d\).

Chọn điểm thứ nhất có \(n\)cách chọn. 

Chọn điểm thứ hai có \(n-1\)cách chọn. 

Chọn hai điểm có \(n\left(n-1\right)\)cách chọn. 

Mà ta có nhận xét: nếu hai điểm được chọn là \(A,B\)thì \(A\)là điểm thứ nhất, \(B\)là điểm thứ hai cũng giống như \(A\)là điểm thứ hai, \(B\)là điểm thứ nhất, do đó số cách chọn bị tính lên \(2\)lần. 

Số cách chọn hai điểm từ \(n\)điểm là: \(\frac{n\left(n-1\right)}{2}\).

Với mỗi cách chọn như thế ta đều lập ra được một tam giác, vậy số tam giác thỏa mãn là: \(\frac{n\left(n-1\right)}{2}\).

13 tháng 5 2015

55 hình tam giác *vì là violympic nên mình không ghi cách trình bày nha*

19 tháng 1 2016

ko phải 55 đâu mình lam rùi

 

16 tháng 4 2017

\(\frac{15.14}{2}=105\)tam giác

2 tháng 7 2024

Có 15!tam giác nha

18 tháng 3 2016

55 đấy k cho mình đi