\(\dfrac{n^3}{24}\)+\(\dfrac{n^2}{8}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{n^3+3n^2+2n}{24}=\dfrac{n\left(n+1\right)\left(n+2\right)}{24}\)

\(=\dfrac{2k\left(2k+1\right)\left(2k+2\right)}{24}=\dfrac{4k\left(2k+1\right)\left(k+1\right)}{24}\)

\(=\dfrac{4k\left(k+1\right)\left(k+2+k-1\right)}{24}\)

\(=\dfrac{4k\left(k+1\right)\left(k+2\right)+4k\left(k+1\right)\left(k-1\right)}{24}=\dfrac{k\left(k+1\right)\left(k+2\right)+k\left(k+1\right)\left(k-1\right)}{6}\)

Vì k;k+1;k+2 là ba số liên tiếp

nen k(k+1)(k+2) chia hết cho 3!=6

k;k+1;k-1 là ba số liên tiếp

nên k(k+1)(k-1) chia hết cho 3!=6

=>A chia hêt cho 6

18 tháng 10 2017

\(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)

\(=\dfrac{n^3+3n^2+2n}{24}=\dfrac{n\left(n+1\right)\left(n+2\right)}{24}\)

Ta có: \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3.

\(n=2k\) nên suy ra n và (n + 2) là 2 số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4.

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\)

Vì 3 và 8 nguyên tố cùng nhau nên: \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)

Vậy ta có ĐPCM

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

17 tháng 3 2017

\(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Leftrightarrow\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\end{matrix}\) \(x,y,z\ne0\Rightarrow a,b,c\ne0\)

\(a^2+b^2+x^2\ge ab+bc+ac\) (*){cơ bản} \(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\ge\left(ab.ac\right)+\left(ab.bc\right)+\left(ac.bc\right)=abc\left(a+b+c\right)=abc\)

(*) bình phương hai vế

\(\Leftrightarrow a^4+b^4+c^4+2\left(ab\right)^2+2\left(ac\right)^2+2\left(bc\right)^2\ge\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge-\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]+2abc\ge-abc+2abc=abc=>dpcm\)Đẳng thức:

a=b=c=1/3=> x=y=z=3

17 tháng 3 2017

ta co \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) \(\Rightarrow\) \(\dfrac{1}{x.x}+\dfrac{1}{y.y}+\dfrac{1}{z.z}=1\)

\(\Rightarrow\dfrac{1}{x.x.x}+\dfrac{1}{y.y.y}+\dfrac{1}{z.z.z}=1\)\(\Rightarrow\dfrac{1}{x.x.x.x}+\dfrac{1}{y.y.y.y}+\dfrac{1}{z.z.z.z}=1\Leftrightarrow\dfrac{1}{x^4}+\dfrac{1^{ }}{y^4}+\dfrac{1}{z^4}=1\)

\(\Rightarrow\)\(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\)>= \(\dfrac{1}{x.y.z}\)

26 tháng 3 2017

Ta có: \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)

Thế vô bài toán ta được

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{\left(n-1\right)\left(n+1\right)}{n.n}=\dfrac{1}{2}.\dfrac{n+1}{n}\)

Ta thấy

\(\dfrac{1}{2}.\dfrac{n}{n}< \dfrac{1}{2}.\dfrac{n+1}{n}< \dfrac{1}{2}.\dfrac{n+n}{n}\)

\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{2}.\dfrac{n+1}{n}< 1\)

\(\Rightarrow\)ĐPCM

AH
Akai Haruma
Giáo viên
10 tháng 9 2017

Lời giải:

Ta có: \(A=\frac{a^3}{24}+\frac{a^2}{8}+\frac{a}{12}=\frac{a^3+3a^2+2a}{24}=\frac{a(a+1)(a+2)}{24}\)

Để CM $A$ là số nguyên thì ta cần chỉ ra \(a(a+1)(a+2)\vdots 24\)

Thật vậy

Vì \(a,a+1,a+2\) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho $3$

\(\Rightarrow a(a+1)(a+2)\vdots 3(1)\)

Vì \(a\) chẵn nên đặt \(a=2k\)

\(\Rightarrow a(a+1)(a+2)=2k(2k+1)(2k+2)=4k(k+1)(2k+1)\)

Thấy rằng \(k(k+1)\) là tích hai số nguyên liên tiếp nên luôn tồn tại một trong hai số đó là số chẵn, do đó \(k(k+1)\vdots 2\)

\(\Leftrightarrow a(a+1)(a+2)=4k(k+1)(2k+1)\vdots 8(2)\)

Từ \((1),(2)\) mà $(8,3)$ nguyên tố cùng nhau nên \(a(a+1)(a+2)\vdots 24\Leftrightarrow A=\frac{a(a+1)(a+2)}{24}\in\mathbb{Z}\)

Ta có đpcm.

28 tháng 7 2017

Đặt \(B=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)

Đặt \(A=\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

\(=\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

\(=n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

\(=\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}=n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2}\right)=n.B\)

\(A:B=n\)