Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức tổng quát của số hạng trong tổng trên có dạng:
\(x_n=\frac{n\left(n+3\right)}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n+2-2}{n^2+3n+2}\)
\(=1-\frac{2}{n^2+3n+2}=1-\frac{2}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow\frac{1.4}{2.3}=1-\frac{2}{2.3}\)
\(\frac{2.5}{3.4}=1-\frac{2}{3.4}\)
\(\frac{3.6}{4.5}=1-\frac{2}{4.5}\)
....
\(\frac{98.101}{99.100}=1-\frac{2}{99.100}\)
\(\Rightarrow N=98-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=98-2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98-1+\frac{1}{50}=97+\frac{1}{50}\)
Vậy 97 < N < 98
ta có A = \(\frac{1.4}{2.3}+\frac{2.5}{3.4}+....+\frac{98.101}{99.100}=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{4950}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)(có 98 chữ số 1)
\(=98-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)=> A < 98
đi rùi giải tiếp
1.4 + 2.5 + 3.6 + ..... + 99.102
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ..... + 99.(100 + 2)
= 1.2 + 2 + 2.3 + 2.2 + 3.4 + 2.3 + .... + 99.100 + 2.99
= (1.2 + 2.3 + 3.4 + .... + 99.100) + (1.2 + 2.2 + 3.2 + .... + 2.99)
= 333300 + 2[(99.100)/2]
= 343200
\(B=1.4+2.5+3.6+...+99.102\)
\(=1.\left(2+2\right)+2.\left(2+3\right)+3.\left(2+4\right)+...+99.\left(2+100\right)\)
\(=1.2+2.1+2.3+2.2+3.4+2.3+...+99.100+2.99\)
\(=\left(1.2+2.3+...+99.100\right)+\left(2.1+2.2+2.3+...+2.99\right)\)
\(=333300+2.\left(1+2+3+...+99\right)\)
\(=333300+2.\left(\frac{99.100}{2}\right)\)
\(=333300+99.100=333300+9900=343200\)
kb với mình nha
Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3
2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4
...
Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)
N=98+1/100−1/2−1/2.3−1/3.4−....−1/99.100
Xét P=1/2.3+1/3.4+....+1/99.100
P= 1/2−1/3+1/3−1/4+.....+1/99−1100
P=1/2−1/100
Vậy N=98-1+1/50
N=97+1/50
Vậy 97<N<98(ĐPCM)