Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là
\(d_2-d_1 = (k+0,5)\lambda.\)
Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)
\(x_s= k\frac{\lambda D}{a}.\)
\(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)
=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)
Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.
Hai nguồn sóng vuông pha, cùng biên độ => \(\triangle \varphi = \frac{\pi}{2}.\)
Biên độ sóng tại M là \( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{(7.25-12.5)\lambda}{\lambda}-\frac{\pi/2}{2\pi})| =|2a.\cos(\frac{-3\pi}{4})|= a\sqrt{2}\)
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
\( i = \frac{\lambda D}{a}= \frac{0,5.2}{0,5}=2mm.\)
Số vân sáng quan sát được trên màn là
\(N_s = 2.[\frac{L}{2.i}]+1=17.\)
\(i = \frac{\lambda D}{a} = 2mm.\)
Số vân tối quan sát trên màn là
\(N_t = 2.[\frac{L}{2i}+0,5]=16.\)
Phương trình sóng tổng quát \(u=a\cos2\pi( ft-\frac{x}{\lambda})\)
So sánh với phương trình bài cho => \(\lambda=50cm.\)