\(\dfrac{x^2}{64}+\dfrac{y^2}{48}=1\)

Tìm tọa độ những điểm M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

30 tháng 3 2017

Hỏi đáp Toán

30 tháng 3 2017

Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .

Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)

Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .

Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .

Cho hình sau: undefined

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

26 tháng 4 2017

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

9 tháng 4 2017

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).