Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,
HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ
mn giúp em với ạ! Cảm ơn nhiều !
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
có: x+y+z=2=>(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=4
mà x^2+y^2+z^2=2 =>2(xy+yz+xz)=2
=>xy+yz+xz=1
xét:1+y^2=xy+yz+xz+y^2=(x+y)(z+y)
tương tự :1+z^2=xy+yz+xz+z^2=(x+z)(y+z)
1+x^2=xy+yz+xz+x^2=(x+z)(x+y)
thay vào M ta có :M=\(\sqrt{\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=\sqrt{\left(y+z\right)^2}\)=/y+z/
Mà x,y,z,\(\in\)Q=>đpcm
Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\)
\(=x\left(x^2-3x+3\right)-1=x\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}x-1\ge\dfrac{3}{4}x-1\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\left(y-1\right)^3\ge\dfrac{3}{4}y-1;\left(z-1\right)^3\ge\dfrac{3}{4}z-1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-3=\dfrac{3}{4}\cdot3-3=-\dfrac{3}{4}\)
Ta có: \(x+y+z=1\) nên:
\(\Rightarrow y+z=1-x\)
Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:
\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)
\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)
\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)
\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)
Mà \(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)
Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)
\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)
Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)
Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)
Akai Haruma
Cô giúp em với ạ!!!!