\(m;n\inℕ^∗\). Tìm Min \(P=\left|36^m-5^n\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề triệu sơn

16 tháng 4 2018

Hiện câu 1 mih chưa giải đc

Đây là đ.a câu 2

\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)

Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)

Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)

Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)

Nhân vế với vế của (1);(2);(3) lại ta được :

\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)

\(\Leftrightarrow abc\ge35.57=1995\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)

25 tháng 2 2020

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

13 tháng 8 2020

a) \(\left(x+2\right)\left(x^2-4x+4\right)-\left(x^3+2x^2\right)=5\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4\right)-x^2\left(x+2\right)=5\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4-x^2\right)=5\)

\(\Leftrightarrow\left(x+2\right)\left(4-4x\right)=5\)

\(\Leftrightarrow4x-4x^2+8-8x=5\)

\(\Leftrightarrow-4x^2-4x+3=0\)

\(\Leftrightarrow4x^2+4x-3=0\)

\(\Leftrightarrow4x^2-2x+6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(x=\left\{\frac{1}{2};-\frac{3}{2}\right\}\)

b) \(6x^2-6x\left(-2+x\right)=36\)

\(\Leftrightarrow6x^2+12x-6x^2=36\)

\(\Leftrightarrow12x=36\)

\(\Leftrightarrow x=3\)

Vậy x = 3

c) \(\left(x+2\right)^2+\left(x-3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)

\(\Leftrightarrow x^2+4x+4+x^2-6x+9-2\left(x^2-1\right)=9\)

\(\Leftrightarrow2x^2-2x+13-2x^2+2=9\)

\(\Leftrightarrow15-2x=9\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

Vậy x = 3

d) \(\left(x+5\right)^2-9=0\)

\(\Leftrightarrow\left(x+5\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=3^2\\\left(x+5\right)^2=\left(-3\right)^2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+5=3\\x+5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-8\end{matrix}\right.\)

Vậy x ={-2; -8}

e) \(\left(x-2\right)^3=x^3+6x^2=7\) (Câu này sai đề thì phải! Mình sửa lại đề, có gì không giống với đề của bạn thì ib mình sửa nha!)

\(\left(x-2\right)^3-x^3+6x^2=7\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=7\)

\(\Leftrightarrow12x-8=7\)

\(\Leftrightarrow12x=15\)

\(\Leftrightarrow x=\frac{5}{4}\)

Vậy \(x=\frac{5}{4}\)

#Chúc bạn học tốt!

20 tháng 7 2017

dễ mà tự làm đi

29 tháng 9 2019

\(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4S=1.2.3.4+2.3.4.4+...+n\left(n+1\right)\left(n+2\right).4\)

\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\)

\(\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(4S=1.2.3.4+2.3.4.5-1.2.3.4+...+\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(4S=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(4S+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n=t\)

\(Đt=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)(là số chính phương)