Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.
Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8
--> khd + 8 chia hết cho d mà khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.
vậy m và mn + 8 là nguyên tố cùng nhau
1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
-Số a ít nhất là 58
- Vậy:
-Số a có chia hết cho 2
-Số a không chia hết cho 4
Vì m và n là 2 số tự nhiên ko chia hết cho 4 và có số dư là hai số lẻ khác nhau => Chúng có dạng:
m = 4a + 1 ; n = 4b + 3
Ta có : m + n = (4a + 1) + (4b + 3) = 4a + 4b + 4 = 4(a + b + 1)
Vì 4 chia hết cho 2 => 4(a + b + 1) chia hết cho 2 => m + n chia hết cho 2 (đpcm)