K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Bài 3:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

27 tháng 9 2019

Xét trường hợp thoy:))

Xét \(m>n\).Đặt \(m=n+k\) với \(k\in N\)

Xét \(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2\left(n+k\right)^3+3n^3-4\left(n+k\right)n^2\)

\(A-B=2n^3+6n^2k+6nk^2+2k^3+3n^3-4n^3-4n^2k\)

\(A-B=n^3+2n^2k+6nk^2+2k^3>0\)

Xét \(m< n\).Đặt \(n=m+k\)

Ta có:

\(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2m^3+3\left(m+k\right)^3-4m\left(m+k\right)^2\)

\(A-B=2m^3+3m^3+9m^2k+9mk^2+3k^3-4m^3-8m^2k-4mk^2\)

\(A-B=m^3+m^2k+5mk^2+3k^2>0\)

Xét \(m=n\)

Ta có:

\(A=2m^3+3n^3=2m^3+3m^3=5m^3\)

\(B=4mn^2=4mm^2=4m^3\)

\(\Rightarrow A>B\)

Vậy \(A>B\) 

14 tháng 7 2016

Ta có:

A-B=2m^3+3m^3-4mn^2

TH1

Nếu m > n. Đặt m=n+x

óA-B=2(n+x)^3+3m^3-4(n+x)n^2

óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x

óA-B=n^3+2n^2x+6nx^2+2x^3>0

Vậy A>B

TH2                     

Nếu m < n. Đặt n=m+y

óA-B=2m^3+3(m+y)^3-4m(m+y)^2

óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2

óA-B=m^3+m^2y+5my^2+3y^3> 0

Vậy A > B

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

15 tháng 12 2021

\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

 

15 tháng 12 2021

\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)

Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

 

16 tháng 12 2021

\(A:B=\left(2n^2-4n+3n-6+3\right):\left(n-2\right)\\ =\left[2n\left(n-2\right)+3\left(n-2\right)+3\right]:\left(n-2\right)=2n+3\left(\text{dư }3\right)\)

Để phép chia hết \(\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

16 tháng 12 2021

theo đề ta có:

\(\dfrac{A}{B}=\dfrac{2n^2-n-3}{n-2}=\dfrac{2n^2-4n+3n-6+3}{n-2}\)

=\(\dfrac{2n\left(n-2\right)+3\left(n-2\right)+3}{n-2}\)

=\(\dfrac{\left(n-2\right)\left(2n+6\right)}{n-2}=\dfrac{2n+6}{1}=2n+6\)

Vậy đa thức A chia hết cho đa thức B

 

 

26 tháng 12 2021

\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)

Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)

\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)

\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)