K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

post lại đề,khó jiểu quá 

29 tháng 11 2018

cho m,n là các số nguyên dương thỏa mãn

 mn+1 chia hết cho 24 cm m+n chia hết cho 24

19 tháng 8 2016

a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8

19 tháng 8 2016

b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

21 tháng 7 2018

 **** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m ) 
Tt: n^2 chia hết cho 3 

=> m^2 + n^2 chia hết cho 3 

**** định lí đảo 
m^2 + n^2 chia hết cho 3 

Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a > 


=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3 

Xét các trườg hợp: 

m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại 
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại 

=> m^2 và n^2 cùng chia hết cho 3 

hay m và n cùng chia hết cho 3

ko bt đúng ko nữa hehe 

21 tháng 7 2018

Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3

Ta có: m^2+n^2= m^2-n^2 + 2n^2

=(m-n)(m+n) + 2n^2

Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3

Và: n chia hết cho 3 nên 2n^2 chia hết cho 3

Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3

Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3

Đúng thì t.i.c.k đúng đi bn

14 tháng 2 2016

\(2.\)  Tính chất: Trong  \(n\)  số nguyên liên tiếp có một  và chỉ một số chia hết cho  \(n\)

Giả sử \(n,\)  \(n+1,...,\)  \(n+1899\)  là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)

Xét  \(1000\) số tự nhiên liên tiếp từ  \(n,\)  \(n+1,...,\)  \(n+999\)  \(\left(2\right)\)  thuộc dãy số  \(\left(1\right)\)

Theo tính chất trên, sẽ có một số chia hết cho  \(1000\)

Giả sử số đó là  \(n_0\), khi đó \(n_0\) có tận cùng là  \(3\) chữ số \(0\) và  \(m\)  là tổng các chữ số của \(n_0\)

Khi đó, ta xét  \(27\)  số tự nhiên gồm:

\(n_0,\)  \(n_0+9,\)  \(n_0+19,\)  \(n_0+29,\)  \(n_0+39,...,\)  \(n_0+99,\)  \(n_0+199,...,\)  \(n_0+899\)  \(\left(3\right)\)

Sẽ có tổng các chữ số gồm  \(27\)  số tự nhiên liên tiếp là  \(m,\)  \(m+1,\)  \(m+2,...,\)  \(m+26\)

Do đó,  có  \(1\)  số chia hết cho  \(27\)

Vậy,  trong  \(1900\)  số tự nhiên liên tiếp có  \(1\)  số có tổng các chữ số chia hết cho \(27\)

 

20 tháng 10 2019

a) Ta có: ( n   +   3 ) 2   -   ( n   - 1 ) 2  = 8(n +1) chia hết cho 8.

b) Ta có: ( n   +   6 ) 2   -   ( n   -   6 ) 2  = 24n chia hết cho 24.

12 tháng 6 2018

1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)

\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)

Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)

2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)

Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6 

Mà 24 chia hết cho 6

=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho

3/  giống bài 2 

4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6