Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
ko bt đúng ko nữa hehe
Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3
Ta có: m^2+n^2= m^2-n^2 + 2n^2
=(m-n)(m+n) + 2n^2
Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3
Và: n chia hết cho 3 nên 2n^2 chia hết cho 3
Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3
Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3
Đúng thì t.i.c.k đúng đi bn
\(2.\) Tính chất: Trong \(n\) số nguyên liên tiếp có một và chỉ một số chia hết cho \(n\)
Giả sử \(n,\) \(n+1,...,\) \(n+1899\) là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)
Xét \(1000\) số tự nhiên liên tiếp từ \(n,\) \(n+1,...,\) \(n+999\) \(\left(2\right)\) thuộc dãy số \(\left(1\right)\)
Theo tính chất trên, sẽ có một số chia hết cho \(1000\)
Giả sử số đó là \(n_0\), khi đó \(n_0\) có tận cùng là \(3\) chữ số \(0\) và \(m\) là tổng các chữ số của \(n_0\)
Khi đó, ta xét \(27\) số tự nhiên gồm:
\(n_0,\) \(n_0+9,\) \(n_0+19,\) \(n_0+29,\) \(n_0+39,...,\) \(n_0+99,\) \(n_0+199,...,\) \(n_0+899\) \(\left(3\right)\)
Sẽ có tổng các chữ số gồm \(27\) số tự nhiên liên tiếp là \(m,\) \(m+1,\) \(m+2,...,\) \(m+26\)
Do đó, có \(1\) số chia hết cho \(27\)
Vậy, trong \(1900\) số tự nhiên liên tiếp có \(1\) số có tổng các chữ số chia hết cho \(27\)
a) Ta có: ( n + 3 ) 2 - ( n - 1 ) 2 = 8(n +1) chia hết cho 8.
b) Ta có: ( n + 6 ) 2 - ( n - 6 ) 2 = 24n chia hết cho 24.
1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)
\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)
Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)
2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)
Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6
Mà 24 chia hết cho 6
=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho
3/ giống bài 2
4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6
post lại đề,khó jiểu quá
cho m,n là các số nguyên dương thỏa mãn
mn+1 chia hết cho 24 cm m+n chia hết cho 24