K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

Gọi O là giao điểm của AB và MN, d là đường trung trực của AB nên d ⊥ AB tại trung điểm O của AB.
Xét 2 tam giác vuông AMB và ANB có:
AM=AN(gt)
OA là cạnh chung

\(=>\text{ΔOAM = ΔOAN}\left(canhhuyen-canhgocvuong\right)\)

18 tháng 9 2023

Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)

Mà MA = NA (gt)

Do đó, MA = NA = MB = NB.

Xét tam giác AMB và tam giác ANB có:

MA = NA (gt)

MB = NB (cmt)

AB chung

Do đó, ∆AMB = ∆ANB (c – c – c).

\(\Rightarrow \widehat{AMB}=\widehat{ANB}\) (2 góc tương ứng).

Vậy MB = NB và góc AMB bằng góc ANB.

a: Ta có: M nằm trên đường trung trực của AB

nên MA=MB

b: Ta có: ΔMAB cân tại M

mà MI là đường trung trực

nên MI là đường phân giác

6 tháng 1 2022

Dạ cảm ơn ạ, biết làm câu C ko ạ giúp với ạ !!!!!!!!!!!!

a: Ta có:M nằm trên đường trung trực của AB

nên MA=MB

4 tháng 3 2016

ko dấu đố ai hiểu dc đó

20 tháng 1 2017

A B C M N

ta có tam giác ABC cân tại A ( AB=AC)  suy ra \(\widehat{ABC}=\widehat{ACB}\)

lại có tam giác MBC cân tại M ( MB =MC ) suy ra \(\widehat{MBC}=\widehat{MCB}\)

suy ra \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{MCB}\)( vì tia MB nằm giữa 2 tia BA và BC ,  tia MC nằm giữa 2 tia CB và CA )

hay \(\widehat{ABM}=\widehat{ACM}\)

xét \(\Delta ABM\)và  \(\Delta ACM\)có  \(\hept{\begin{cases}AMchung\\AB=AC\left(gt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\end{cases}}\)

do đó \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)( 2 góc tương ứng )

mà tia  AM nằm giữa 2 tia AB và AC suy ra AM là phân giác góc BAC (1)

b)   xét \(\Delta ANB\)và \(\Delta ANC\)có \(\hept{\begin{cases}ANchung\\NB=NC\left(gt\right)\\AB=AC\left(gt\right)\end{cases}}\)

do đó \(\Delta ANB=\Delta ANC\left(c.c.c\right)\)

suy ra \(\widehat{BAN}=\widehat{CAN}\)( 2 góc tương ứng )

mà tia AN nằm giữa 2 tia AB và AC do đó AN là phân giác góc BAC (2)

từ (1) và (2)  suy ra AM trùng AN hay A;M:N thẳng hàng

c) xét \(\Delta MNB\)và \(\Delta MNC\)có \(\hept{\begin{cases}MB=MC\left(gt\right)\\\widehat{MBN}=\widehat{MCN}\left(cmt\right)\\BN=NC\end{cases}}\)

do đó tam giác MNB = tam giác MNC (c.g.c)

do đó \(\widehat{MNB}=\widehat{MNC}\)và \(\widehat{MNB}+\widehat{MNC}=180^o\)hay \(\widehat{MNB}=\widehat{MNC}=\frac{180^o}{2}=90^o\)hay MN vuông góc với BC và BN = NC hay MN là trung trực BC