K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
    = a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
    = (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta  có a2+b2 ≥2ab
    a2+ c2 ≥ 2ac
    b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
 Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3

 

NV
8 tháng 5 2021

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

11 tháng 5 2021

Với mọi số thực ta luôn có:

`(a-b)^2+(b-c)^2+(c-a)^2>=0`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`

`<=>a^2+b^2+c^2>=4/3`

Dấu "=" xảy ra khi `a=b=c=2/3`

~Quang Anh Vũ~

11 tháng 4 2019

Áp dụng BĐT Bun-hia-cop-xki ta có:

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)

Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)

11 tháng 4 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(=4-2\left(ab+bc+ca\right)\)

Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min

7 tháng 12 2020

câu a dùng biến đổi tương đương là được

7 tháng 12 2020

bạn kiểm tra lại xem có sai đề không