Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3-27}{x^2-9}\left(x\ne\pm3\right)\)
\(=\dfrac{x^3-3^3}{x^2-3^2}\)
\(=\dfrac{\left(x-3\right)\left(x^2+3x+9\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+3x+9}{x+3}\)
\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)
\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)
\(2x^2-2x+1-12-4x^2+2x^2-10x\)
\(-12x-11\)
x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))
c: Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)\)
\(=x^2-25-x-5\)
\(=x^2-x-30\)
1: \(\left(x+1\right)^3=x^3+3x^2+3x+1\)
2: \(\left(x-1\right)^3=x^3-3x^2+3x-1\)
3: \(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
4: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
5: \(\left(x+2\right)^3=x^3+6x^2+12x+8\)
Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c
Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất; nếu a < 0 thì em sẽ tìm giá trị lớn nhất
Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất
Bước 3: kết luận
Giải:
A = 3\(x^2\) - 5\(x\) + 3 Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất
A = 3\(x^2\) - 5\(x\) + 3
A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\)) + \(\dfrac{11}{12}\)
A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\)
Vì (\(x-\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)
Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)
Hằng đẳng thức bậc cao sử dụng nhị thức newton