K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Do la 2 so 16 va -25

10 tháng 7 2018

Theo hệ thức vi-ét thì 2 số đó sẽ là nghiệm của phương trình: 

       \(x^2+9x-400=0\)

\(\Leftrightarrow\)\(\left(x+25\right)\left(x-16\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-25\\x=16\end{cases}}\)

Vậy 2 số đó là:  \(-25;16\)

9 tháng 10 2015

Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1

Không mất tính tổng quát, giả sử  0 < a < b < c < d < e 

Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)

ta có: 2e > c + d >  \(\frac{2}{3}\) => e  > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm

Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)

Mặt khác, 1 = a + b + c + d + e a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)

 +) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)

=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)

 

 

30 tháng 6 2016

Ta có:a, |2x-1|= |2x+3|

<=> 2x - 1 = -(2x + 3) 

=> 2x + 2x = 3 + 1

=> 4x = 4

=> x = 1

31 tháng 5 2021

Gọi số tự nhiên đó có dạng ab

a+b=5

=>a=5-b

a2+b2=13

Thay a=5-b vào ta đc

(5-b)2+b2=13

<=>25-10b+b2+b2=13

<=>2b2-10b+12=0

<=>2(b2-5b+6)=0

<=>b2-2b-3b+6=0

<=>b(b-2)-3(b-2)=0

<=>(b-3)(b-2)=0

=> b-3=0 hoặc b-2=0

=> b=3 hoặc b=2

Vậy ab=32 hoặc ab=23

 

7 tháng 1 2022

méo bt tự làm đi nha

7 tháng 4 2016

Gọi 2 số lần lượt là a và b

Theo bài ra a+b=17 và (a+3)(b+2)=ab+45

Giải hệ phương trình ta sẽ ra là a=5;b=12

Vậy 2 số cần tìm là 5 và 12     

5 tháng 6 2023

Gọi  số thứ nhất và số thứ hai phải tìm lần lượt là a,b

+)Theo đầu bài tổng của 2 số này bằng 17

=>ta có phương trình:a+b=17(1)

+)Nếu tăng thêm số thứ nhất 3 đơn vị và tăng số thứ 2 2 đơn vị thì tích của chúng bằng 105

=>ta có phương trình:(a+3)(b+2)=105(2)

Từ (1)(2) ta có hệ phương trình\(\left\{{}\begin{matrix}a+b=17\\\left(a+3\right)\left(b+2\right)2=105\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=17-b\\\left(17-b+3\right)\left(b+2\right)=105\left(x\right)\end{matrix}\right.\)

Giải pt (x)

(17-b+3)(b+2)=105

<=>(20-b)(b+2)=105

<=>-b^2+18b+40=105

<=>b^2-18b-40=-105

<=>b^2-18b+65=0

<=>b^2-13b-5b+65=0

<=>b(b-13)-5(b-13)=0

<=>(b-5)(b-13)=0

<=>b=5 hoặc b=13

+)nếu b=5=>a=12

+)nếu b=13=>a=4

Vậy 2 số phải tìm là(12;5);(4;13)

 

11 tháng 3 2018

a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:

\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)

Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi). 

Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.

b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}\)

Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)

Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.

11 tháng 3 2018

Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !