Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :
\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)
\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1;9=9\)
\(\Rightarrow\)Ta so sánh mẫu , ta có:
\(10^{2017}< 10^{2018}\)
\(\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
Hay \(A>B\)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
Ta có :
20169 + 201610 = 20169 x (1 + 2016) = 20169 x 2017 (1)
201710 = 20179 x 2017 (2)
Từ (1) và (2) = > 20169 + 201610 < 201710
Ủng hộ mk nha !!! ^_^
a: \(0.2=\dfrac{2}{10}\)
10>7
=>\(\dfrac{2}{10}< \dfrac{2}{7}\)
=>\(\dfrac{2}{7}>0.2\)
b: \(-\dfrac{1^5}{6}=\dfrac{-1}{6}=\dfrac{-3}{18}\)
\(\dfrac{8}{-9}=-\dfrac{16}{18}\)
mà -3>-16
nên \(-\dfrac{1^5}{6}>\dfrac{8}{-9}\)
c: \(\dfrac{2017}{2016}>1\)
\(1>\dfrac{2017}{2018}\)
Do đó: \(\dfrac{2017}{2016}>\dfrac{2017}{2018}\)
d: \(-\dfrac{249}{333}=\dfrac{-249:3}{333:3}=\dfrac{-83}{111}\)
e: \(\dfrac{5^1}{3}=\dfrac{5}{3}=\dfrac{15}{9}\)
\(\dfrac{4^8}{9}=\dfrac{65536}{9}\)
mà 15<65536
nên \(\dfrac{5^1}{3}< \dfrac{4^8}{9}\)
f: 13,589<13,612
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
bằng nhau
Ý mình hỏi là giải thích ra luôn ấy. Thanks bạn