Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xài bđt phụ mới cần phải chứng minh nhé
mà tau nhớ làm gì có Cô si dạng Engel ??? ._.
#)Giải :
Đặt \(\hept{\begin{cases}\frac{ab}{c}=x\\\frac{bc}{a}=y\\\frac{ca}{b}=z\end{cases}\Rightarrow\hept{\begin{cases}a^2=xz\\b^2=xy\\c^2=yz\end{cases}}\Rightarrow xy+yz+xz=3}\)
Theo hệ quả của BĐT Cauchy :
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=9\)
\(\Rightarrow x+y+z\ge3\) hay \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge3\left(đpcm\right)\)
Dấu ''='' xảy ra \(\Leftrightarrow\) a = b = c = 1
\(102=x^2+y^2+52\)
\(=\left(x^2+16\right)+\left(y^2+36\right)\)
\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)
\(\Rightarrow A\le26\) tại x=4;y=6
Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải
chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm
Cho tam giác ABC và điểm M trong tam giác. Gọi khoảng cách từ M đến các cạnh BC, CA, AB lần lượt là da, db, dc và khoảng cách từ M đến các đỉnh A,B,C là x,y,z và AB=c, BC=a, CA=b. CMR:
x+y+z\(\ge\)2(da+db+dc) ( BĐT Erdos )
Không được đâu em nhé! Em xem lại cái đề nhé!
bdt <=> \(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3zx\ge0\)
<=> \(x^2+y^2+z^2-xy-yz-zx\ge0\)
<=> \(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
<=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) luôn đúng
vậy bđt ban đầu luôn đúng.
À vâng em cảm ơn ạ lúc đánh đề em ghi nhầm ạ