Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\left|a\right|< 1\),\(\left|b-1\right|< 10\)suy ra \(\left|a\right|.\left|b-1\right|< 10\Rightarrow\left|a\left(b-1\right)\right|< 10\Leftrightarrow\left|ab-a\right|< 10\)
\(\Leftrightarrow-10< ab-a< 10\)(1)
có \(\left|a-c\right|< 10\Leftrightarrow-10< a-c< 10\)(2)
cộng lần lượt các vế của (1) và (2) ta có \(-10+\left(-10\right)< ab-a+a-c< 10+10\Leftrightarrow-20< ab-c< 20\)
suy ra \(\left|ab-c\right|< 20\)
Bài 1 :
\(\frac{x}{20}=\frac{5}{x}\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-10\end{cases}}\)
Bài 2 :
a) Xét tam giác ABM và tam giác ACM có :
AB = BC ( GT )
Góc A1 = góc A2 ( vì AI là phân giác của góc A )
AM: cạnh chung
=> tam giác ABM = tam giác ACM ( c - g - c )
=> BM = CM ( 2 cạnh tương ứng )
b) Xét tam giác ABC có AB = AC
=> ABC là tam giác cân tại A
Mà AI là phân giác của góc A trong tam giác ABC
=> Ai đồng thời là đường cao ; đường trung tuyến của cạnh BC
=> Điều phải chứng minh .
P/s : nếu chưa học thì xét tam giác
c) Ta có : AI vuông góc với BC ( ý b )
DH vuông góc với BC ( GT )
=> AI // DH ( quan hệ từ vuông góc đến song song )
=> Góc BDH = góc A1 ( 1 góc đồng vị )
Mà góc A1 = 1/2 góc BAC
=> BAC = 2 BDH
bài 1
\(\frac{x}{20}=\frac{5}{x}\)
\(\Leftrightarrow x^2=20.5\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow x=\sqrt{100}=10\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)
Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔBAD=ΔBED
=>DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
=>DE\(\perp\)BC
a. Xét tam giác vuông BKH và tam giác vuông BCA có:
+ BK = BC (gt)
+ B là góc chung
=> tam giác vuông BKH = tam giác vuông BCA (cạnh huyền + góc nhọn )
=> KH = AC ( 2 cạnh tương ứng )
b. Theo Cm ý a. ta có : tam giác vuông BKH = tam giác vuông BCA
=> BA = BH ( 2 cạnh tương ứng ) (*)
Xét tam giác vuông BEH và tam giác vuông BEA có:
+ BA = BH ( theo * )
+ Cạnh BE chung
=> Tam giác vuông BEH = tam giác vuông BEA
=> góc ABE = góc HBE ( 2 góc tương ứng )
c.tự làm nhé :)
c. Theo Cm ý b. ta có Tam giác vuông BEH = tam giác vuông BEA
=> EA = EH ( 2 cạnh tương ứng ) (**)
Xét tam giác vuông AEK và tam giác vuông HEC có :
+ EA = EH ( theo ** )
+ góc AEK = góc HEC ( đối đỉnh )
=> tam giác vuông AEK = tam giác vuông HEC ( cạnh góc vuông + góc nhọn )
=> EK = EC ( 2 cạnh tương ứng ) (***)
Xét tam giác AEK có góc A là góc vuông
=> góc A là góc lớn nhất trong tam giác
Mà EK đối diện với góc A
=> EK là cạnh lớn nhất trong tam giác AEK
=> EK > EA
Lại có : EK = EC ( theo *** )
=> EC > EA
=> AE < EC
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
Ta có :
\(ab-c=ab-a+a-c=a\left(b-1\right)+\left(a-c\right)\)
\(\Rightarrow\left|ab-c\right|=\left|a\left(b-1\right)+\left(a-c\right)\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\left(b-1\right)\right|+\left|a+c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\right|\left|b-1\right|+\left|a-c\right|\)
Mà \(\left|a\right|< 1;\left|b-1\right|< 10;\left|a-c\right|< 10\)
\(\Rightarrow\left|ab-c\right|< 1.10+10\)
\(\Rightarrow\left|ab-c\right|< 20\left(đpcm\right)\)