K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Có , mình biết 1 người

23 tháng 9 2017

Địa lí hay vật lí bạn

Trong toán học, định lý Pytago (còn gọi là Pythagorean theorem theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago":[1]

{\displaystyle a^{2}+b^{2}=c^{2},}{\displaystyle a^{2}+b^{2}=c^{2},}

với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.

Mặc dù những hiểu biết về mối liên hệ này đã được biết trước thời của ông,[2][3] định lý được đặt tên theo nhà toán học Hy Lạp cổ đại Pythagoras (k. 570–495 BC) khi - với những tư liệu lịch sử đã ghi lại - ông được coi là người đầu tiên chứng minh được định lý này.[4][5][6] Có một số chứng cứ cho thấy các nhà toán học Babylon đã hiểu về công thức này, mặc dù có ít tư liệu cho thấy họ đã sử dụng nó trong khuôn khổ của toán học.[7][8] Các nhà toán học khu vực Lưỡng Hà, Ấn Độ và Trung Quốc cũng đều tự khám phá ra định lý này và trong một số nơi, họ đã đưa ra chứng minh cho một vài trường hợp đặc biệt.

16 tháng 5 2021
-Bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông(Định lý pytago) a^2+b^2=c^2 (a,b: cạnh góc vuông) (c: cạnh huyền)
30 tháng 3 2022

mong bạn sớm gia nhập hội hỏi đáp nhanh ở toán và hóa, hi vọng bạn sẽ trở thành người chăm chỉ để giúp các bn khác :))

30 tháng 3 2022

uk thank bn nha 

24 tháng 10 2017

Định lý Bézout: Cho đa thức f(x) hệ số thực, a là một nghiệm thực của f(x) khi và chỉ khi f(x) chia hết cho x - a.
Ví dụ: f(x) = x^3 - 6x^2 + 11x - 6 có f(1) = 0, f(2) = 0, f(3) = 0 nên f(x) chia hết cho x - 1, x - 2, x - 3

24 tháng 10 2017

 dư trong phép chia đa thức f(x)cho nhị thức bậc nhất x-a là 1hằng số và bằng giá trị của đa thức f(x) tại x=a 
ta CM:gọi thg of phep chia đa thức f(x)cho nhị thức bậc nhất x-a là Q(x) dư hằng số r,ta có: 
f(x)=(x-a).Q(x)+r (*) 
vì đằng thức (*) đúng với mọi x nên với x=a,ta có: 
f(a)=0.Q(a)+r hay f(a)=r 
Vậy số dư trong phép chia f(x)cho nhị thức bậc nhất x-a la f(x) 
Từ đó bạn có thể dựa vào đó để tìm đa thức biết số dư