K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho mik hỏi: Câu 1: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB A.BD+ BE < 2AB B.BD +BE>2AB C.BD + BE = 2AB D.BD + BE < AB Câu 3: Cho tam...
Đọc tiếp

Cho mik hỏi:

Câu 1:

Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB A.BD+ BE < 2AB B.BD +BE>2AB C.BD + BE = 2AB D.BD + BE < AB Câu 3: Cho tam giác ABC có BD, CE là hai đường cao. So sánh BD + CE và AB + AC A.BD+ CE <AB+ AC B.BD+ CE >AB+ AC C.BD+ CE =AB+ AC Câu 4: Cho tam giác ABC vuông tại A. Trên cạnh AB, AC lần lượt lấy các điểm D, E (D, E không trùng với các đỉnh của tam giác ABC). Chọn đáp án đúng nhất? A.DE > BE < BC B.DE < BE > BC C.DE > BE > BC D.DE < BE < BC Câu 5: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Tổng độ dài BE và CF lớn nhất bằng độ dài cạnh nào? A.AB B.AC C.BC D.Không bằng cạnh nào Mik cảm ơn mọi người. Mong mọi người giúp. Nếu đc cho mình xin hình vẽ luôn ạ. Thanks
0
12 tháng 10 2019

Vì BE ⊥ Ax tại E nên tam giác BEM vuông tại E ⇒ BM > BE (quan hệ đường xiên và đường vuông góc)

Vì CF  ⊥ Ax tại F nên tam giác CFM vuông tại F ⇒ CM > CF (quan hệ đường xiên và đường vuông góc)

Khi đó ta có: BM + CM > BE + CF

Mà BM + CM = BC (M thuộc BC)

Do đó: BC > BE + CF hay BE + CF < BC.

Chọn đáp án A

22 tháng 3 2022

Đáp án nào zị?? 

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

25 tháng 3 2018

19 tháng 1 2022

câu  sai nha bạn người ta bảo điều kiện của tam giác abc chứ ko phải thay canh BE với CE nha

5 tháng 2 2021

xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền 

suy ra EM = \(\frac{1}{2}\)BC        (1)

xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền 

suy ra FM = \(\frac{1}{2}\)BC        (2)

từ (1) và (2) suy ra M là trung điểm EF

mà M là trung điểm của BC

từ 2 điều đó suy ra BECF là hình bình hành 

suy ra BE = CF

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
29 tháng 11 2014

Xét 2 TG vuông BME và CMF, ta có:

BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)

=>TG BME=TG CMF(cạnh huyền-góc nhọn)

=>BE=CF(2 cạnh tương ứng)

20 tháng 11 2017


Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)