Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có:
\(\frac{x}{10}=\frac{y}{5};\frac{y}{2}=\frac{z}{3}\)=>\(\frac{x}{20}=\frac{y}{10}=\frac{z}{15}=>\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}\)
mà 2x-3y+4z=330
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}=\frac{2x-3y+4z}{40-30+60}=\frac{330}{70}=\frac{33}{7}=>x=\frac{660}{7};y=\frac{330}{7};z=\frac{495}{7}\)
Bài 1: bn ghi thiếu đề rùi đó
Bài 2:
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=k\Rightarrow x=15k\\\frac{y}{10}=k\Rightarrow y=10k\end{cases}}\)
z/6 = k => z = 6k
mà x.y = 600 => 15k.10k = 600
150.k2 = 600
k2 = 600:150
k2 = 4
=> k = 2 hoặc k = -2
TH1: k = 2
x = 15k => x = 15.2 => x = 30
y = 10k => y = 10.2 => y = 20
z = 6k => z = 6.2 => z = 12
TH2: k = -2
...
KL: (x;y;z) = { ( 30;20;12);(-30;-20;-12)}
Bài 3:
ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{12}=\frac{z}{9}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{9}=\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}\)
ADTCDTSBN
có: \(\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}=\frac{2x-5y+z}{16-60+9}=\frac{14}{-35}=\frac{-2}{5}\)
\(\Rightarrow\frac{x}{8}=\frac{-2}{5}\Rightarrow x=\frac{-16}{5}\)
...
KL:...
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(x=\frac{3}{2}.12=18\)
\(y=\frac{4}{3}.12=16\)
\(z=\frac{5}{4}.12=15\)
Ta có \(\frac{2x}{3}\)=\(\frac{3y}{4}\)\(\Rightarrow\)\(y=\frac{8x}{9}\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\\ \Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\\ \Leftrightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau , ta có
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\\ =\frac{x+y+z}{18+16+15}\\ =\frac{49}{49}\\ =1\)
Ta có \(\frac{x}{18}=1\Rightarrow x=18x1=18\)
\(\frac{y}{16}=1\Rightarrow y=16x1=16\)
\(\frac{z}{15}=1\Rightarrow z=15x1=15\)
Kết luận : x=18 , y=16 , z=15
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\frac{x}{8}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{-z}{-15}=\frac{x+\left(-z\right)}{8+\left(-15\right)}=\frac{10}{-7}\)
Do đó
\(\frac{x}{8}=\frac{10}{-7}\Rightarrow x=\frac{80}{-7}\)
\(\frac{y}{12}=\frac{10}{-7}\Rightarrow y=\frac{120}{-7}\)
\(\frac{z}{15}=\frac{10}{-7}\Rightarrow z=\frac{150}{-7}\)
a)
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)
=> 2(x+y+z) +3 =1=> x+y+z=-1
Luôn đùng Vói mọi x;y;z khác o sao cho x+y+z = -1
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
x= 3/2 .12=18
y= 4/3 .12=16
z=5/4 .12=15
\(\dfrac{x}{10}\) = \(\dfrac{y}{5}\) ⇒ \(x\) = \(\dfrac{y}{5}\) \(\times\) 10 = 2y
\(\dfrac{y}{2}\) = \(\dfrac{z}{3}\) = ⇒ \(\dfrac{4y}{8}\) = \(\dfrac{4z}{12}\) ⇒ 4z = \(\dfrac{4y}{8}\) \(\times\) 12 = 6y
Theo bài rat ta có:
\(x+4z\) = 2y + 6y = 320 ⇒ 8y = 320 ⇒ y = 320: 8 =40
\(x\) = 40 \(\times\) 2 = 80
z = \(\dfrac{y}{2}\) \(\times\) 3 = \(\dfrac{40}{2}\) \(\times\) 3 = 60
Vậy \(x\) = 80; y = 40; z = 60