K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Tham khảo:

Đường thẳng c cắt hai đường thẳng a, b lần lượt tại A và B

Ta có A thuộc a mà a nằm trong mp(P) suy ra A cũng nằm trong mp(P)

B thuộc b mà b nằm trong mp(P) suy ra B cũng nằm trong mp(P)

Suy ra đường thẳng AB cũng nằm trong mp(P) tức c cũng nằm trong mp(P).

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

2 tháng 8 2019

Giải bài 10 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) SM, CD cùng thuộc (SCD) và không song song.

Gọi N là giao điểm của SM và CD.

⇒ N ∈ CD và N ∈ SM

Mà SM ⊂ (SMB)

⇒ N ∈ (SMB)

⇒ N = (SMB) ∩ CD.

b) N ∈ CD ⊂ (ABCD)

⇒ BN ⊂ (ABCD)

⇒ AC; BN cùng nằm trong (ABCD) và không song song

Gọi giao điểm của AC và BN là H.

+ H ∈ AC ⊂ (SAC)

+ H ∈ BN ⊂ (SBM)

⇒ H ∈ (SAC) ∩ (SBM)

Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S

⇒ (SAC) ∩ (SBM) = SH.

c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:

I ∈ BM

I ∈ SH ⊂ (SAC).

 

⇒ I = BM ∩ (SAC).

) Trong mp(SAC), gọi giao điểm của AI và SC là P.

+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)

⇒ P = (AMB) ∩ SC.

Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).

⇒ P ∈ (AMB) ∩ (SCD).

Lại có: M ∈ (SCD) (gt)

⇒ M ∈ (MAB) ∩ (SCD)

Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.

31 tháng 3 2017

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ.

19 tháng 3 2019

a) Giao tuyến của các cặp mặt phẳng

*Giao tuyến của (AEC) và (BFD)

• Trong hình thang ABCD, AC cắt DB tại G, ta có:

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Tương tự, AE cắt BF tại H,

Ta có :

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11 ⇒ H ∈ (AEC) ∩ (BFD).

Vậy GH = (AEC) ∩ (BFD)

*Giao tuyến của (BCE) và (ADF)

Trong hình thang ABCD, BC cắt AD tại I, ta có: I ∈ (BCE) ∩ (ADF)

Trong hình thang ABEF, BE cắt AF tại K, ta có: K ∈ (BCE) ∩ (ADF)

Vậy IK = (BCE) ∩ (ADF)

b) Giao điểm của AM với mp(BCE)

Trong mp(ADF), AM cắt IK tại N, ta có:

N ∈ IK ⊂ (BCE)

Vậy N = AM ∩ (BCE).

c) Giả sử AC cắt BF.

⇒ Qua AC và BF xác định duy nhất 1 mặt phẳng.

Mà qua A và BF có duy nhất mặt phẳng (ABEF)

⇒ AC ⊂ (ABEF)

⇒ C ∈ (ABEF) (Vô lý).

Vậy AC và BF không cắt nhau.

22 tháng 9 2023

Tham khảo:

Ta có N thuộc đường thẳng AB , mà AB nằm trong mặt phẳng (ABM) nên N cũng nằm trong mp(ABM)

M và N đều nằm trong mặt phẳng (ABM) nên MN nằm trong mp(ABM) (1)

M thuộc SC suy ra M nằm trong mp(SCD), N thuộc đường thẳng CD nên N nằm trong mp(SCD)

Do đó, MN nằm trong mp(SCD) (2)

Từ (1) và (2) suy ra MN là giao tuyến của hai mp(ABM) và (SCD)

5 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) MB' qua M và song song với (ABC) và (ABD) ⇒ MB′ song song với giao tuyến AB của hai mặt phẳng này. Ta có: MB′ // AB nên MB' và AB xác định một mặt phẳng. Giả sử MB cắt AB' tại I.

Ta có: I ∈ BM ⇒ I ∈ (BCD)

I ∈ AB′ ⇒ I ∈ (ACD)

Nên I ∈ (BCD) ∩ (ACD) = CD

Có: I ∈ CD

Vậy ba đường thẳng AB', BM và CD đồng quy tại I.

b) MB′ // AB Giải sách bài tập Toán 11 | Giải sbt Toán 11

Kẻ MM′ ⊥ CD và BH ⊥ CD

Ta có: MM′ // BH Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Tương tự ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 3 2018

Đáp án B

Ta có: NI ∩ SD = J

Xét (CMN) và (SAD) có:

M là điểm chung

J là điểm chung

⇒ MJ là giao tuyến của 2 mặt phẳng (CMN) và (SAD)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).

Chọn A.

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia