Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(R=\dfrac{\left(R1+R2\right)R3}{R1+R2+R3}=\dfrac{\left(80+40\right)60}{80+40+60}=40\Omega\)
b. \(U=U12=U3=IR=40.0,15=6V\)(R12//R3)
\(\left\{{}\begin{matrix}I3=U3:R3=6:60=0,1A\\I12=I1=I2=U12:R12=6:\left(80+40\right)=0,05A\left(R1ntR2\right)\end{matrix}\right.\)
a/ \(R_m=R_1+\frac{R_2.R_3}{R_2+R_3}=4+\frac{10.15}{10+15}=10\left(Ôm\right)\)
b/ \(I_m=\frac{U}{R_m}=\frac{5}{10}=\frac{1}{2}\left(A\right)=I_{23}=I_1\)
\(U_{23}=I_{23}.R_{23}=2\left(V\right)=U_2=U_3\)
\(I_2=\frac{U_2}{R_2}=\frac{2}{10}=\frac{1}{5}\left(A\right)\)
\(I_3=\frac{U_3}{R_3}=\frac{2}{15}\left(A\right)\)
Vậy....
R1nt(R2//R3)
a) \(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=2\left(\Omega\right)\)
\(\rightarrow R_{td}=R_1+R_{23}=4+2=6\left(\Omega\right)\)
b) Ta có : \(I_1=I_{23}=I=\dfrac{U}{R_{tđ}}=\dfrac{6}{2}=3A\)
\(U_{23}=U_2=U_3=I_{23}.R_{23}=3.2=6V\)
\(\rightarrow I_2=\dfrac{U_2}{R_2}=\dfrac{6}{6}=1A\)
\(a)R_{tđ}=R_1+\dfrac{R_2.R_3}{R_2+R_3}=15+\dfrac{30.30}{30+30}=30\Omega\\ b)I=\dfrac{U}{R_{tđ}}=\dfrac{12}{30}=0,4A\\ R_1ntR_{23}\\ \Rightarrow I=I_1=I_{23}=0,4A\\ U_1=R_1.I=15.0,4=6V\\ U_{23}=12-6=6V\\ R_2//R_3\\ \Rightarrow U_{23}=U_2=U_3=6V\\ I_2=\dfrac{U_2}{R_2}=\dfrac{6}{30}=0,2A\\ I_3=I_{23}-I_2=0,4-0,2=0,2A\)