Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để E nguyên thì -x+3 chia hết cho x-1
=>-x+1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
a. Ta có:
\(M=\frac{x+3}{x-2}=\frac{x-2+2+3}{x-2}=\frac{x-2}{x-2}+\frac{2+3}{x-2}=1+\frac{5}{x-2}\)
- Để M nguyên thì 5 phải chia hết x - 2
\(\Rightarrow\)x - 2 \(\in\)Ư(5) = {-5;-1;1;5}
\(\Rightarrow\)x \(\in\){-3;1;3;7}
Vậy:...
a, \(\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
\(\Rightarrow x-2\in\text{Ư}\left(5\right)=\left(+-1;+-5\right)\)
Lập bảng (tự tính nhé)
b, Vì tử thức =5 >0 (dương không đổi )
\(\Rightarrow x-2\)đạt GTLN
Suy ra \(x-2=-1\)
\(\Rightarrow x=1\)
Vậy MinM=-4 \(\Leftrightarrow x=1\)
Hok tốt
\(M=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=1+\frac{10}{4-x}\)
M lớn nhất khi \(\frac{10}{4-x}\)lớn nhất (1)
Xét \(x< 4\)thì \(\frac{10}{4-x}>0\)
\(x>4\)thì \(\frac{10}{4-x}< 0\)
Vậy ta chỉ quan tâm x < 4 hay 4 - x > 0 (2)
Từ (1) suy ra 4 - x có GTNN (3)
Từ (2), (3) kết hợp với x nguyên suy ra 4 - x = 1 nên x = 3
Vậy GTLN của M là 11 khi và chỉ khi x = 3
\(A=\frac{14-x}{4-x}\)
\(A=\frac{10+4-x}{4-x}\)
\(A=\frac{10}{4-x}+1\)
Để A lớn nhất thì \(\frac{10}{4-x}\)lớn nhất
điều này xảy ra khi 4-x là số nguyên dương nhỏ nhất
tức là 4-x=1
x=3
Khi đó A=\(\frac{14-3}{4-3}=11\)
Vậy GTLN của A là 11 khi x=3
Để `M = ( 7-x )/( x-4 )` nguyên
`=> 7-x` \(\vdots\) `x-4`
`=> x-7` \(\vdots\) `x-4`
`=> \(x-4-3\) \(\vdots\) `x-4`
Do `x-4` \(\vdots\) `x-4` mà để `x-4-3` \(\vdots\) `x-4`
`=> 3` \(\vdots\) `x-4` hay `x-4 in Ư_(3) = { +-1 ; +-3 }`
`=> x in { 5;3;7;1}`
Vậy `x in { 5;3;7;1}`
Để T nguyên thì \(2021-x⋮10-x\)
\(\Leftrightarrow x-2021⋮x-10\)
\(\Leftrightarrow x-10\in\left\{1;-1;2011;-2011\right\}\)
hay \(x\in\left\{11;9;2021;-2001\right\}\)
a) Ta có: \(M=\dfrac{8-x}{x+3}=\dfrac{-\left(x+3\right)+11}{x+3}=-1+\dfrac{11}{x+3}\) (ĐK: \(x\ne-3\))
Để \(M\in Z\) thì \(\left(x+3\right)\inƯ\left(11\right)=\left\{1;-1;11;-;11\right\}\)
\(\Rightarrow x\in\left\{-2;-4;8;-14\right\}\) (TMĐK)
Vậy \(x\in\left\{-2;-4;8;-14\right\}\) thì \(M\in Z\)
a) M nguyên ⇔ x∈Ư(5).
b) Mmax=10 ⇔ x=-2.