Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ;1/19+1/29+1/31+1/39>1/40+1/40+1/40+1/40
1/19+1/29+1/31+1/39>1/40.4=4/40=1/10
Vậy 1/19+1/29+1/31+1/39>1/10
vì 1/19>1/40; 1/29>1/40; 1/31>1/40; 1/39>1/40
nên 1/19+1/29+1/31+1/39>1/40+1/40+1/40+1/40=1/10
nên M>1/10. Vậy M>1/10
Mỏi tay rồi, mình trả lời đã hơn chục bài trong 1 tiếng nên mình chỉ ra kết quả thui nha: M<\(\frac{1}{10}\)
M = 1 /19 + 1 /29 + 1/ 31 + 1/ 39 > 1 / 40 + 1/ 40 + 1/ 40 + 1/40 = 4 / 40 = 1/10 nen
M > 1/ 10
vì 1/9 > 1/40 ; 1/29 > 1/40 ; 1/31 > 1/40; 1/39 > 1/40
nên 1/9 + 1/ 29 + 1/31 + 1/39 > 1/40 + 1/40 + 1/40 + 1/40 mà 1/40 + 1/40 + 1/40 + 1/40 = 1/10
=) M > 1/10
M > 1/20 + 1/30 + 1/40 + 1/40
M> 2/15 > 2/20 = 1/10
=> M > 1/10
\(M=\frac{10^{30}+1}{10^{31}+1}\)
\(\Rightarrow10M=\frac{10\cdot(10^{30}+1)}{10^{31}+1}\)
\(\Rightarrow10M=\frac{10^{31}+10}{10^{31}+1}\)
\(\Rightarrow10M=\frac{10^{31}+1+9}{10^{31}+1}\)
\(\Rightarrow10M=1+\frac{9}{10^{31}+1}\)
\(N=\frac{10^{31}+1}{10^{32}+1}\)
\(\Rightarrow10N=\frac{10\cdot(10^{31}+1)}{10^{32}+1}\)
\(\Rightarrow10N=\frac{10^{32}+10}{10^{32}+1}\)
\(\Rightarrow10N=\frac{10^{32}+1+9}{10^{32}+1}\)
\(\Rightarrow10N=1+\frac{9}{10^{32}+1}\)
Mà\(1+\frac{9}{10^{31}+1}>1+\frac{9}{10^{32}+1}\)
Nên \(10M>10N\)
Hay \(M>N\)
\(M=\dfrac{10^{20}+1}{10^{19}+1}\)
\(N=\dfrac{10^{21}+1}{10^{20}+1}< \dfrac{10^{21}+1+9}{10^{20}+1+9}=\dfrac{10^{21}+10}{10^{20}+10}=\dfrac{10\left(10^{20}+1\right)}{10\left(10^{19}+1\right)}=\dfrac{10^{20}+1}{10^{19}+1}=M\)
\(\Rightarrow N< M\)
M>\(\frac{1}{10}\)