Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
1.
Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)
Dấu "=" khi a = b.
Áp dụng:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)
\(=4+2+5=11\)
Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)
\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)
\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)
\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)
\(\Delta=P^2-4\left(1-P\right)^2\)
\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)
Để P có GTNN và GTLN thì phương trình (*) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)
\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)
\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)
\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\le P\le2\)
Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)