K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

hình tự vẽ

Gọi I là giao điểm của BM và AC

Xét 2 tam giác BIC và AIM có:

BI < IC + BC  (1) (bất đẳng thức tam giác)

MA < MI + IA (2)  (bất đẵng thức...)

Cộng (1) và (2);vế theo vế

=>BI + MA < AI + IC + BC + MI (3)

Vì điểm M nằm giữa B và I

=>BI = BM + MI  (4)

điểm I nằm giữa A và C

=>AI + IC = AC (5)

Tử (3);(4);(5)

=>BM + MA + MI < AC + BC + MI

=>MB + MA < AC + BC  

Chứng minh tương tự với MA + MC < AB + BC

                                 và MC + MB < AB + AC

Cộng từng vế các BĐT trên

=>\(2\left(MA+MB+MC\right)<2\left(AB+AC+BC\right)\)

hay \(MA+MB+MC\)\(<\)\(AB+AC+BC\left(6\right)\)

Xét tam giác MAB,tam giác MBC,tam giác MCA  lần lượt có:

\(MA+MB>AB\) (BĐT tam giác)

\(MB+MC>BC\) (BĐT tam giác)

\(MC+MA>AC\) (BĐT tam giác)

Cộng  từng vế các BĐT trên

=>\(2\left(MA+MB+MC\right)>AB+BC+AC\)

hay \(MA+MB+MC>\frac{AB+AC+BC}{2}\left(7\right)\)

Từ (6);(7)

=>\(\frac{AB+AC+BC}{2}\) \(<\) \(MA+MB+MC\) \(<\) \(AB+AC+BC\left(đpcm\right)\)

27 tháng 2 2022

:V chưa V:

27 tháng 2 2022

a) xét tam giác MIA có: MA < MI+IA (bđt tam giác)

                             =>   MA+MB < MI+IA+MB

                              => MA+MB < (MI+MB)+IA 

                             => MA+MB < IB+IA (1)

 b) xét tam giác BIC có: IB < IC+CB (bđt tam giác)

                               => IB+IA < IC+CB+IA

                              => IB+IA < (IC+IA)+CB

                              => IB+IA < CA+CB  (2)

c) từ (1) và (2) => MA+MB < CA+CB

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

14 tháng 4 2021

$M$ là điểm nằm trong $ΔABC$

nên ta có các tam giác $ΔMAB;MAC;MBC$

Xét $ΔMAB$ có: $MA+MB>AB$ (quan hệ giữa 3 cạnh trong 1 tam giác;bất đẳng thức tam giác)

tương tự $ΔMAC$ có: $MA+MC>AC$

$ΔMBC$ có: $MB+MC>BC$

nên $MA+MB+MA+MC+MB+MC>AB+BC+CA$

suy ra $2.(MA+MB+MC)>AB+BC+CA$
hay $MA+MB+MC>\dfrac{AB+BC+CA}{2}$

dùng bất đẳng thức tam giác!!!!!!!!

758769