Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)
a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)
b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)
d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)
\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)
\(=\dfrac{x}{x+y}\)
a) PT \(\Leftrightarrow\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A+B\left(x-1\right)+C\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(\Leftrightarrow x^2-x+2=A+Bx-B+Cx^2-2Cx+C\)
\(\Leftrightarrow x^2-x+2=Cx^2+x\left(B-2C\right)+\left(A+C-B\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}C=1\\B-2C=-1\\A+C-B=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=2\\B=1\\C=1\end{matrix}\right.\)
b: \(\Leftrightarrow\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A\cdot x^2+A+\left(Bx+C\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2\cdot A+A+x^2\cdot B-x\cdot B+x\cdot C-C=x^2+2x-1\)
\(\Leftrightarrow x^2\left(A+B\right)+x\left(-B+C\right)+A-C=x^2+2x-1\)
=>A+B=1; -B+C=2; A-C=-1
=>A+C=3; A-C=-1; A+B=1
=>A=1; C=2; B=1-A=0
\(\Leftrightarrow x^2-x+2=A+B\left(x-1\right)+C\left(x^2-2x+1\right)\)
=>x^2-x+2=A+Bx-B+Cx^2-2Cx+C
=>x^2-x+2=x^2*C+x(B-2C)+A-B+C
=>C=1; B-2C=-1; A-B+C=2
=>C=1; B=-1+2*C=-1+2=1; A=2+B-C=2+1-1=2
a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1
=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1
=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1
=>x^2(a+b+c)+x(3a+2b+c)+2a=1
=>a+b+c=0 và 3a+2b+c=0 và a=1/2
=>a=1/2; b+c=-1/2; 2b+c=-3/2
=>b=-1; c=1/2; a=1/2
b: =>1=(ax+b)(x-1)+c(x^2+1)
=>x^2*a-a*x+bx-b+cx^2+c=1
=>x^2(a+c)+x(-a+b)-b+c=1
=>a+c=0 và -a+b=0 và -b+c=1
=>a+b=-1 và -a+b=0 và a+c=0
=>a=-1/2; b=-1/2; c=-a=1/2
Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)
M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)
= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)
= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac
= 4x\(^2\)-2x(a+b+c)+ab+bc+ca
Thay 2x=a+b+c,ta được:
M= 4x\(^2\)-2x.2c+ab+bc+ca
M= 4x\(^2\)-4x\(^2\)+ab+bc+ca
M= ab+bc+ca