K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

a) Ta có: AC vừa là trung tuyến vừa là đường cao của tam giác CBD

=> Tam giác CDB cân tại C

b) Ta có: AM song song với BC(gt) và A là trung điểm của DB

=> M cũng là trung điểm của CD (Định lý về đường trung bình)

c) M là trung điểm của CD (theo câu b) và N là trung điểm của CB(gt)

=> MN là đường trung bình của tam giác CBD => MN // DB

28 tháng 5 2017

\(4.\)- Vì \(\Delta CBD\)cân tại \(C\)(cmt)  \(\Rightarrow\) \(CA\)là tia phân giác \(\widehat{BCD}\)
                                                         \(\Rightarrow\) \(\widehat{BCD}=2.\widehat{BCA}=2.30^0=60^0\)
- Xét \(\Delta BCA\)vuông tại \(A\) \(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^0\)                   
                                              \(\Rightarrow\)\(\widehat{ABC}=90^0-\widehat{BCA}=90^0-30^0=60^0\)
- Xét \(\Delta CBD\)có \(\widehat{BCD}=60^0;\)\(\widehat{ABC}=60^0\) \(\Rightarrow\) \(\Delta CBD\)đều
- Xét  \(\Delta CBD\)đều  có:
  \(\cdot\) \(M\)là trung điểm của \(DC\) (cmt)   suy ra  \(BM\) là đường trung tuyến của \(DC\)
  \(\cdot\) \(A\) là trung điểm của \(DB\) (gt)      suy ra  \(CA\) là đường trung tuyến của \(DB\)
mà   \(BM\)cắt \(CA\) tại \(G\)  (gt)  suy ra \(G\)là trọng tâm của \(\Delta CBD\)
     nên  \(BG=2.GM=2.3=6\left(cm\right)\)
- Vì    \(\Delta CBD\)đều nên \(BM=CA\)suy ra \(GA=GM=3cm\)
- Xét \(\Delta ABG\) vuông tại \(A\)theo định lý Py-ta-go,
   ta được:           \(AB^2=BG^2-AG^2=6^2-3^2=27\)(cm)
                \(\Rightarrow\)  \(AB=\sqrt{27}\)       

 

a) Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b)Xét ΔADC vuông tại A và ΔABC vuông tại A có 

CA chung

AD=AB(gt)

Do đó: ΔADC=ΔABC(hai cạnh góc vuông)

c) Xét ΔEMD và ΔBMC có 

\(\widehat{EDM}=\widehat{BCM}\)(hai góc so le trong, ED//BC)

MD=MC(M là trung điểm của CD)

\(\widehat{EMD}=\widehat{BMC}\)(hai góc đối đỉnh)

Do đó: ΔEMD=ΔBMC(g-c-g)

Suy ra: ED=BC(hai cạnh tương ứng)

mà BC=CD(ΔCDA=ΔCBA)

nên ED=CD

hay ΔCDE cân tại D

25 tháng 4 2020

\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)

Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Tính độ dài BC. 

b) Chứng minh AB = CD, AB // CD.

c) Chứng minh góc BAM > góc CAM.

d)gọi H là trung điểm của BM trên đường thẳng AH lấy E sao cho AH=HE,CE cắt AD tại F.Chứng minh F là trung điểm của CE

1 tháng 5 2016

NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi thích chép lại đề lắm à 

a: Xét ΔCBD có

CA vừa là trung tuyến, vừa là đường cao

=>ΔCDB cân tại C

b: Xét ΔMDE và ΔMCB có

góc DME=góc CMB

MD=MC

góc MDE=góc MCB

=>ΔMDE=ΔMCB

=>ME=MB và CB=DE

BC+BD=ED+BD>BE