Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m^3 + 3m^2 - m - 3
= m^2.(m + 3) - (m + 3)
= (m^2 - 1)(m + 3)
= (m - 1)(m + 1)(m + 3)
Vì m là số nguyên lẻ nên (m - 1)(m + 1)(m + 3) là tích 3 số nguyên chẵn liên tiếp
Do đó (m - 1)(m + 1)(m + 3) chia hết cho 16 (1)
(m - 1)(m + 1)(m + 3) chia hết cho 3 (2)
Từ (1) và (2) mà (16;3)=1 nên (m - 1)(m + 1)(m + 3) chia hết cho 48
=> m^3 + 3m^2 - m - 3 chia hết cho 48 (đpcm)
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\) Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho \(m\) nên \(m\) không chia hết cho \(3.\)
Cuối cùng, \(m-1=\frac{9^p-9}{8}\). Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)
chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho \(2p.\) Suy ra \(3^{m-1}-1\) chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)
Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình.
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\
\)
Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)
Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))
Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)
\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)
Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))
Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)
Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)
Từ (1), (2) và (3) => ĐPCM
Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)
\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
\(2,B=a^5-5a^3+4a=a^5-4a^3-a^3+4a\)
\(=a^3\left(a^2-4\right)-a\left(a^2-4\right)\)
\(=\left(a^3-a\right)\left(a^2-4\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)
5 số tự nhiên liếp tiếp chia hết cho 5
4 số tự nhiên liên tiếp chia hết cho 4
3 số tự nhiên liên tiếp chia hết cho 6
\(\Rightarrow\left(a+1\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(120\)
\(\Rightarrow B\)\(⋮120\left(đpcm\right)\)
nếu m=n thì ta có đpcm
xét m khác n ta đặt \(\hept{\begin{cases}m+n=2x\\m-n=2y\end{cases}\left(x,y\in Z,x>0;y\ne0\right)}\)khi đó ta có \(\hept{\begin{cases}x+y=m\\x-y=n\end{cases}}\)do đó m,n>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}\Rightarrow x>\left|y\right|}\)
do \(n^2-1⋮\left|m^2-n+1\right|\Rightarrow-\left(m^2-n^2-1\right)+m^2⋮\left|m^2-n^2+1\right|\Rightarrow m^2⋮m^2-n^2+1\)
\(\Rightarrow m^2=k\left(m^2-n^2+1\right)\left(1\right)\left(k\inℤ\right)\)
thay m=x+y; n=x-y ta có \(\left(x+y\right)^2=k\left(4xy+1\right)\Leftrightarrow x^2-2\left(2k-1\right)xy+y^2-k=0\)(*)
phương trình (*) có 1 nghiệm của x thuộc Z nên có 1 nghiệm nữa là x1 theo hệ thức Vi-et ta có
\(\hept{\begin{cases}x+x_1=2\left(2k-1\right)\\xx_1=y^2-k\end{cases}}\Rightarrow x_1\inℤ\)
nếu x1>0 thì (x1;y) là một cặp nghiệm thỏa mãn (*)
=> \(x_1>\left|y\right|\Rightarrow y^2-k=xx_1>\left|y\right|^2=y^2\Rightarrow k< 0\Rightarrow x_1+x=2\left(2k-1\right)< 0\)mâu thuẫn
nếu x1<0 thì \(xx_1=y^2-k< 0\Rightarrow k>y^2\Rightarrow k>0\Rightarrow4xy+1>0\Rightarrow y>0\)ta có
\(k=x_1^2-2\left(2k-1\right)x_1y+y^2=x_1^2+2\left(2k-1\right)\left|x_1\right|y\ge2\left(2k-1\right)>k\)mâu thuẫn
vậy x1=0 khi đó k=y2 và \(m^2-n^2+1=\frac{m^2}{k}=\left(\frac{m}{y}\right)^2\)nên m2-n2+1 là số chính phương
Ta có : \(m;n\)là hai số nguyên tố cùng nhau.
\(\RightarrowƯCLN(m;n)=1\)
Mà \(m^2⋮n\)
\(n^2⋮m\)
Và có : \(m;n\)là hai số lẻ nguyên dương
\(\Rightarrow m=m=1\)
\(\Rightarrow m^2+n^2+2=4\)
\(\Rightarrow4m.n=4\)
\(\Rightarrow m^2+n^2+2⋮4mn\left(đpcm\right)\)
Ta có:
\(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)
\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)
\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)
\(\Rightarrow2m^2+2n^2+4⋮mn\)
\(\Rightarrow m^2+n^2+2⋮mn\left(1\right)\)
Vì m, n lẻ
\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)
\(\Rightarrow m^2+n^2+2⋮4\left(2\right)\)
Từ (1) và (2) \(\Rightarrow m^2+n^2+2⋮4mn\)