Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có M = 5 + 52 + 53 + ......... + 580
Ta thấy rằng M toàn số hạng chia hết cho 1 và 5
\(\Rightarrow M⋮1;5\)
\(\Rightarrow\)M không phải là số chính phương ( đpcm )
Mình chỉ làm theo ý nghĩ của mình thôi, có gì sai bạn thông cảm nha.
a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)
\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)
\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)
\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)
a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)
M = 5.6 + 53.6 + ... + 579.6
M = 6.(5 + 53 + ... + 579) chia hết cho 6
Chứng tỏ M chia hết cho 6
b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25
=> 52; 53; ...; 580 đều chia hết cho 5 và 25
Mà 5 chia hết cho 5 nhưng không chia hết cho 25
=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương
Chứng tỏ M không phải số chính phương
a. Ta có: M = 5 + 52 + 53 + ...+ 580
= 5 + 52 + 55 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)
= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)
= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578) chia hết cho 30
b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
a) M= 5+5^2+5^3+.....+5^80
M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5
M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)
M=5^1×6+5^3×6+...5^79×6
M=6×(5^1+5^3+...+5^79
Có 6 chia hết cho 6 nênM chia hết cho 6
b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương
a) M= (5+52+53+54)+...+(577+578+579+580)
M=5(1+5+52+53)+...+577(1+5+52+53)
M=5*156+...+577*156
M=5*(26*6)+...+577*(26*6)
Vậy M chia hết cho 6
b) Tôi không biết thông cảm nhé
A=5+5^2+.......+5^2013
5A=5^2+5^3+.....+5^2014
4A=5^2014-5
A=5^2014-5/4
A khong la so chung phuong
k cho minh nhe
1 số chính phương chia hết cho nguyên tố p thì cũng chia hết cho p^2
áp dụng vào bài này: biểu thức chia hết cho 5 mà 5 là nguyên tố nên cũng chia hết cho 25 nếu biểu thức là số chính phương.
BL
Đặt \(A=5+5^2+5^3+....+5^{2013}\)
Ta thấy tất cả các số hạng của A đều chia hết cho 5 nên \(A⋮5\)
mà 5 là nguyên tố
nên A là số chính phương thì \(A⋮25\)
Ta thấy kể từ hạng tử thứ 2 của A thì đều chia hết cho 25; nhưng 5 ko chia hết cho 25]
\(\Rightarrow\)A ko chia hết cho 25 (mâu thuẫn)
Vậy A ko phải số chính phương
Đặt A=5+5^2+5^3+...+5^2013
Ta có:A chia hết cho 5 mà A ko chia hết cho 25 nên A ko là số chính phương
s chia hết cho 5 nhưng ko chia hết cho 25
con chia hết cho 65 chỉ cần cm s chia hết cho 13 roi gộp 1 số 1 phân tích ra
S = 5 + 52 + 53 + ... + 52012
= (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) + ... + (52009 + 52010 + 52011 + 52012)
= 65 . 12 + 54.(5 + 52 + 53 + 54) + ... + 52008.(5 + 52 + 53 + 54)
= 65 .12 + 54 . 65 . 12 + ... + 52008 . 65 .12
= 65.12.(1 + 54 + ... + 52008) chia hết cho 65
Ta thấy các lũy thừa của 5 tư 52 trở đi đều chia hết cho 5 va 25
=>52;53;...;580 đều chia hết cho 5 và 25
Mak 5 chia hết cho 5 mà ko chia hết cho 52
=>M chia hết cho 5 nhưng ko chia hết cho 52
=>M ko la số chính phương