Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hơi sai mình sửa lại \(M=5^1+5^2+5^3+...+5^{100}\)
Suy ra : \(5.M=5^2+5^3+5^4+...+5^{100}+5^{101}\)
Nên \(5.M-M=5^{101}-5\)hay \(4.M=5^{101}-5\)
Khi đó \(4.m+5=5^{101}-5+5=5^{101}=5^n\)nên n = 101
Vậy n = 101
Ta có:
A=5+52+53+...+5100
5A=52+53+54+...+5101
4A=5A-A=(52+53+54+...+5101)-(5+52+53+...+5100)
4A=5101-5
4A+5=5101-5+5
4A+5=5101
=>n=101.
a) 5M=5(\(5+5^2++.......+5^{60}\)
5M=\(5^2+5^3+...+5^{61}\)
5M-M=\(\left(5^2+5^3+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
4M=\(5^{61}-5\)
M=\(\left(5^{61}-5\right):4\)
b) \(\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(5\cdot6+5^3\cdot6+...+5^{59}\cdot6\)
\(6\left(5+5^3+5^5+...+5^{59}\right)\)
\(\Rightarrow M⋮6\)
ta có: N = 5 + 5^2 + 5^3 + 5^4 + ...+ 5^2014
=> 5N = 5^2 + 5^3 + 5^4 + 5^5+...+5^2015
=> 5N - N = 5^2015 - 5
4N = 5^2015 - 5
=> 4N + 5 = 5^2015
=> x = 2015
ta có: N = 5 + 5^2 + 5^3 + 5^4 + ...+ 5^2014
=> 5N = 5^2 + 5^3 + 5^4 + 5^5+...+5^2015
=> 5N - N = 5^2015 - 5
4N = 5^2015 - 5
=> 4N + 5 = 5^2015
=> x = 2015
#
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
Học dốt giúp dc ko =))))))
Bài 1 :
a, \(x^{15}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy .....
b, \(\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Vậy .....
c, \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(2A+3=3^{101}=3^n\)
\(n=101\)
a) M = 5 + 52 + 53 + .... + 560
=> 5M = 5 . 5 + 52 . 5 + 53 . 5 + ... + 560 . 5
=> 5M = 52 + 53 + 54 + .... + 561
=> 5M - M = 561 - 5
=> 4M = 561 - 5
=> M = \(\frac{\text{5^{61} - 5}}{4}\)\(\frac{5^{61}-5}{4}\)
b) M = 5 + 52 + 53 + .... + 560
=> M = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 559 + 560 )
=> M = 5 . ( 50 + 51 ) + 53 . ( 50 + 51 ) + ... + 559 . ( 50 + 51 )
=> M = 5 . 6 + 53 . 6 + ... + 559 . 6
=> M = 6 . ( 5 + 53 + ... + 559 ) \(⋮\)6 => đpcm
M = 5 + 52 + ... + 5100
5M = 52 + 53 + ... + 5101
5M - M = (52 + 53 + ... + 5101) - (5 + 52 + ... + 5100)
4M = 5101 - 5
4M + 5 = 5101 = 5n
=> n = 101
Vậy n = 101
\(M=5+5^2+...+5^{100}\)
\(5M=5^2+5^3+...+5^{101}\)
\(5M-M=\left(5^2+5^3+...+5^{101}\right)-\left(5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-5\)
\(4M+5=5^{101}-5+5\)
\(5^n=5^{101}\)
n = 101