K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

\(11M=\frac{11^{2016}+11}{11^{2016}+1}=1+\frac{10}{11^{2016}+1}\)

\(11N=\frac{11^{2017}+11}{11^{2017}+1}=1+\frac{10}{11^{2017}+1}\)

Vi \(\frac{10}{11^{2016}+1}>\frac{10}{11^{2017}+1}\) nen 11M > 11N => M > N

21 tháng 4 2016

M>N bạn nha

25 tháng 3 2022

M>N

25 tháng 3 2022

Tham khảo:

https://hoc247.net/hoi-dap/toan-6/so-sanh-m-101-102-1-101-103-1-va-n-101-103-1-101-104-1--faq225210.html

9 tháng 5 2021

 ta có: M=10^2020 +1 / 10^2019 +1

=> M/10= 10^2020 +1 / 10( 10^2019 +1 )

= 10^2020+1/ 10^2020 +10

=>  10/A=  10^2020 +10/10^2020 +1

=(10^2020 +1) +9/ 10^2020+1

=10^2020+1 /10^2020+1 + 9/10^2020+1

=1+ 9/10^2020+1

ta lại có: N=10^2021 +1/10^2020 +1

=> N/10= 10^2021+1/ 10(10^2020+1)

= 10^2021+1 / 10^2021+10

=> 10/N=10^2021+10 / 10^2021+1

=(10^2021+1) +9/10^2021+1

=10^2021+1/10^2021+1 +9/10^2021+1

=1+ 9/10^2021+1

ta thấy: 10/M>10N

=>M<N

\(M=\dfrac{10^{2020}+1}{10^{2019}+1}=1-\dfrac{9}{10^{2019}+1}\)

\(N=\dfrac{10^{2021}+1}{10^{2020}+1}=1-\dfrac{9}{10^{2020}+1}\)

Ta có: \(10^{2019}+1< 10^{2020}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2019}+1}>\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow-\dfrac{9}{10^{2019}+1}< -\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow M< N\)

N=1/3*(1-1/7+1/7-1/16+...+1/28-1/43)=1/3*42/43=14/43

M=86/1025

=>M<N

9 tháng 3 2017

tất nhiên M=N

11 tháng 11 2021

chịu nhá

9 tháng 3 2017

Ta có :

\(\frac{1}{101}>\frac{1}{150}\)

\(\frac{1}{102}>\frac{1}{150}\)

\(\frac{1}{103}>\frac{1}{150}\)

\(..............\)

\(\frac{1}{150}=\frac{1}{150}\)

Cộng vế với vết ta được :

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\) (có 50 số hạng \(\frac{1}{150}\) ) \(=\frac{50}{150}=\frac{1}{3}\) \(\left(1\right)\)

Ta lại có :

\(\frac{1}{151}>\frac{1}{200}\)

\(\frac{1}{152}>\frac{1}{200}\)

\(\frac{1}{153}>\frac{1}{200}\)

\(............\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vết ta được :

\(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)(có 50 số hạng \(\frac{1}{200}\) ) \(=\frac{50}{200}=\frac{1}{4}\) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

11 tháng 4 2015

a)          ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)

\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)

 \(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)

\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)

\(N=5.\frac{401}{2010}\)

\(N=\frac{401}{402}\)

b)         \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)

               ta thấy      \(\frac{1}{11}=\frac{1}{11}\)

                                \(\frac{1}{12}