Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCDEG là lục giác đều nên:
Các đường chéo chính bằng nhau và cắt nhau tại O, tạo nên các tam giác đều.
Do vậy, các cạnh OA = OB = OC = OD = OE = OG và bằng nửa độ dài đường chéo chính.
Trong lục giác đều các đường chéo chính bằng nhau \(\Rightarrow CG=BE=50\)
\(BO=\dfrac{1}{2}BE=25\)
Các tam giác được tạo ra là các tam giác đều nên \(\Delta OAB\) đều
\(\Rightarrow AB=BO=25\)
\(\Rightarrow AB+CG=25+50=75\)
a) tia Ob nằm giữa Oa và Ob vì :
^aOb+^bOc=^aOc
^aOb<^bOc(600<1200)
b) VìtiaObnằm giữa OavàOcnên:
^aOb+^bOc=^aOc
600+ ^bOc=1200
^bOc=1200−600
⇒ ^bOc=600
TiaOblàtiaphângiaccua^aOcvì:
^aOb+^bOc=^aOc
^aOb=^bOc=1600
P/s : bạn vào câu hỏi tương tự để xem thêm nhé !
a,Vì ^AOB < ^AOC (60o < 120o)
=>OB nằm giữa OA và OC (1)
b,Ta có ^AOB + ^BOC = ^AOC
60o + ^BOC = 120o
^BOC = 60o
=>^AOB = ^BOC = 60o (2)
Từ (1) và (2)=>Ob là p/g ^AOC
c,TA có ^AOC + ^COD = 180o(góc bẹt)
=>^COD=180o - 120o
=>^COD=60o
=> ^COE=^EOD=\(\frac{60^o}{2}=30^o\)
Ta có: ^EOB=^BOC + ^COE
^EOB=60o + 30o
^EOB= 90o
O là trung điểm của của ABCDEG nên KHI VÀ CHỈ KHI các cạnh nối O đều bằng nhau
sorry bạn, mình lớp 7 nên cách trình bày hơi khác