K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

đl hàm số cosin cho \(\Delta ACB\Rightarrow AB=a\sqrt{7}\)

va \(S_{\Delta ACB}=a^2\dfrac{\sqrt{3}}{2}\Rightarrow CI=a\dfrac{\sqrt{21}}{7}\)

\(\Delta A'CI\)vuông tại I,có \(\widehat{CA'}I=30^0\Rightarrow CA'=2a\dfrac{\sqrt{21}}{7}\Rightarrow AA'=a\dfrac{\sqrt{35}}{7}\)\(\Rightarrow BM=a\dfrac{\sqrt{35}}{14}\)

\(\Delta ABM\Rightarrow AM=a\dfrac{\sqrt{1407}}{14}\)

goi H la hinh chieu cua A' len(ACM) \(\Rightarrow A'H\perp AM\)

ke MK\(\perp\) AA', trong tam giác AA'M cho ta : A'H.ÀM=MK.AA'\(\Rightarrow A'H=\dfrac{a\sqrt{7}.\dfrac{\sqrt{35}}{7}a}{a\dfrac{\sqrt{1407}}{14}}=\dfrac{a14\sqrt{5}}{\sqrt{1407}}\)

Vectơ trong không gian, Quan hệ vuông góc

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

NV
4 tháng 4 2021

ABB'A' và CDD'C' là hình vuông \(\Rightarrow CD'\perp DC'\Rightarrow CD'\perp\left(ADC'B'\right)\)

Gọi M là giao điểm CD' và DC' \(\Rightarrow\) M là trung điểm 2 đoạn nói trên

Trong mp (ADC'B'), từ M kẻ \(MH\perp AC'\Rightarrow MH\) là đường vuông góc chung của AC' và CD'

\(DC'=AB'=\sqrt{AB^2+A'A^2}=a\sqrt{2}\)

\(\Rightarrow AD=B'C'=\sqrt{AC'^2-AB'^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ADC'\) vuông cân tại D \(\Rightarrow\Delta MHC'\) vuông cân tại H

\(\Rightarrow MH=\dfrac{MC'}{\sqrt{2}}=\dfrac{DC'}{2\sqrt{2}}=\dfrac{a}{2}\)

NV
27 tháng 4 2021

\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)

\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)

a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)

Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)

b. Kiểm tra lại đề câu này

Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)

Có lẽ không ai bắt tính điều này cả.

c.

\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)