Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\)
\(=\dfrac{z-x+x-y}{\left(x-y\right)\left(z-x\right)}+\dfrac{x-y+y-z}{\left(y-z\right)\left(x-y\right)}+\dfrac{y-z+z-x}{\left(z-x\right)\left(y-z\right)}\)
\(=\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}+\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}\)
\(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
\(4\left(y-z\right)\left(z-x\right)+4\left(z-y\right)\left(x-y\right)+4\left(x-z\right)\left(y-z\right)=0\)
\(\Leftrightarrow4yz-4xy-4xz+4x^2+4xz-4yz-4xy+4y^2+4xy-4xz-4yz+4z^2=0\)\(\Leftrightarrow4x^2-4xy-4xz+4y^2-4yz+4z^2=0\)
\(\Leftrightarrow4\left(x^2-xy-xz+y^2-yz+z^2\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\Leftrightarrow x=y=z\)
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
\(\Leftrightarrow\) \(\frac{\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)}\)\(+\frac{\left(y-x\right)-\left(y-z\right)}{\left(y-z\right)\left(y-x\right)}+\frac{\left(z-y\right)-\left(z-x\right)}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
\(\Leftrightarrow\)\(\frac{1}{x-y}-\frac{1}{x-z}+\frac{1}{y-z}-\frac{1}{y-x}+\frac{1}{z-x}-\frac{1}{z-y}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
\(\Leftrightarrow\)\(\frac{1}{x-y}+\frac{1}{z-x}+\frac{1}{y-z}+\frac{1}{x-y}+\frac{1}{z-x}+\frac{1}{y-z}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
tự lm nốt ik
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z