\(\left(v_n\right)\left\{{}\begin{matrix}v_1=\dfrac{1}{2018}\\v_{n+1}=\dfrac{2v_n}{1+2018v_n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2021

Quy nạp 1 cách đơn giản, ta dễ dàng chứng minh dãy dương

Lại có: \(v_{n+1}=\dfrac{2v_n}{1+2018v_n^2}\le\dfrac{2v_n}{2\sqrt{1.2018v_n^2}}=\dfrac{1}{\sqrt{2018}}\)

\(\Rightarrow\) Dãy bị chặn trên bởi \(\dfrac{1}{\sqrt{2018}}\) hay \(v_n\le\dfrac{1}{\sqrt{2018}}\Leftrightarrow v_n^2\le\dfrac{1}{2018}\)  ; \(\forall n\ge1\)

\(\Leftrightarrow1-2018v_n^2\ge0\)

Ta có: \(v_{n+1}-v_n=\dfrac{2v_n}{1+2018v_n^2}-v_n=\dfrac{v_n-2018v_n^3}{1+2018v_n^2}=\dfrac{v_n\left(1-2018v_n^2\right)}{1+2018v_n^2}\ge0\)

\(\Rightarrow v_{n+1}\ge v_n\) (đpcm)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

26 tháng 5 2017

\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\)\(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân