Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $\Delta'=m^2-(m^2-2)=2>0$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=-m$
$x_1x_2=\frac{m^2-2}{2}$
$\Rightarrow (x_1+x_2)^2=m^2=2x_1x_2+2$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2$
$\Leftrightarrow x_1^2+x_2^2=2$
Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$
b.
\(A=\frac{2x_1x_2+3}{2+2x_1x_2+1}=\frac{2x_1x_2+3}{2x_1x_2+3}=1\) nên không có có min, max.
Ta có :
\(\Delta=b^2-4.a.c\)
\(\Delta=[-\left(5-m\right)]^2-4.1.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-4.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-16m-16\)
\(\Delta=m^2-26m+9\)
\(\Delta=\left(m-13\right)^2-160\) > 0 \(\forall m\) \(\in R\)
Theo ht vi - ét , ta có :
\(x_1+x_2=\) \(5+m\)
\(x_1.x_2=4m+4\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{12}\)
⇔ \(x_1+x_2=\dfrac{7}{12}\)
⇔ \(5+m=\dfrac{7}{12}\)
⇔ \(m=-\dfrac{53}{12}\)
Vậy m = \(-\dfrac{53}{12}\)
( không chắc đáp án đâu nhé )
Có \(\Delta'=\left(m+4\right)^2-m^2+8=m^2+8m+16-m^2+8=24>0\)
Nên pt có nghiệm với mọi m
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{cases}}\)
a,(Phải là GTLN nhá)
Có \(x_1+x_2-3x_1x_2=2\left(m+4\right)-3\left(m^2-8\right)\)
\(=2m+8-3m^2+24\)
\(=-3m^2+2m+32\)
\(=-3\left(m^2-\frac{2}{3}m+\frac{1}{9}\right)+\frac{95}{3}\)
\(=-3\left(m-\frac{1}{3}\right)^2+\frac{95}{3}\le\frac{95}{3}\)
Dấu "=" <=> m = 1/3
b, Thấy tổng x_1 ; x_2 là bậc 1 của m , tích là bậc 2 của m nên ko tồn tại hệ thức thỏa mãn đề
\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)=\left(2m-1\right)^2+16>0\)
Phương trình luôn có 2 nghiệm pb
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\) (1)
a/ \(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(2m-4\right)+2\left|2m-4\right|=25\)
- Với \(m\ge2\) ta có:
\(\left(2m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}2m+1=5\\2m+1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-3< 2\left(l\right)\end{matrix}\right.\)
- Với \(m< 2\) ta có:
\(\left(2m+1\right)^2-4\left(2m-4\right)-25=0\)
\(\Leftrightarrow4m^2-4m-8=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\left(l\right)\end{matrix}\right.\)
b/ \(x_1< 1< x_2\Leftrightarrow\left\{{}\begin{matrix}x_1-1< 0\\x_2-1>0\end{matrix}\right.\) \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow2m-4-\left(2m+1\right)+1< 0\)
\(\Leftrightarrow-4< 0\) (luôn đúng)
Vậy với mọi m pt luôn có 2 nghiệm t/m \(x_1< 1< x_2\)
c/ Trừ vế cho vế của hệ (1) ta được:
\(x_1+x_2-x_1x_2=5\)
Đây chính là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
xét pt \(x^2-2x+m-1=0\) \(\left(1\right)\)
từ (1) ta có \(\Delta'=\left(-1\right)^2-m+1\)
\(\Delta'=1-m+1\)
\(\Delta'=2-m\)
để pt (1) co 2 nghiệm phân biệt \(x_1,x_2\)thì \(\Delta'>0\Leftrightarrow2-m>0\)
\(\Leftrightarrow m< 2\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)
theo câu a) \(x_1=2x_2\Leftrightarrow x_1-2x_2=0\) \(\left(3\right)\)
từ \(\left(1\right)\) và \(\left(3\right)\) ta có hpt
\(\hept{\begin{cases}x_1+x_2=2\\x_1-2x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_2=2\\x_1+x_2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{2}{3}\\x_1=\frac{4}{3}\end{cases}}\left(4\right)\)
thay \(\left(3\right)\) và (2) ta có \(x_1.x_2=m-1\)
\(\Leftrightarrow m-1=\frac{4}{3}.\frac{2}{3}\)
\(\Leftrightarrow m-1=\frac{8}{9}\)
\(\Leftrightarrow m=\frac{17}{9}\) ( TM \(m< 2\) )
vậy \(m=\frac{17}{9}\) là giá trị cần tìm
a) theo bài ra \(\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1-x_2\right|\right)^2=16\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4\left(x_1.x_2\right)-16=0\)
\(\Leftrightarrow2^2-4.\left(m-1\right)-16=0\)
\(\Leftrightarrow-12-4\left(m-1\right)=0\)
\(\Leftrightarrow-4\left(m-1\right)=12\)
\(\Leftrightarrow m-1=-3\)
\(\Leftrightarrow m=-2\) ( TM \(m< 2\))
vậy....
b) \(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x^2_1+2\left|x_1\right|.\left|x_2\right|+x^2_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow2^2-2\left(m-1\right)+2\left|m-1\right|=16\) \(\left(#\right)\)
+) Nếu \(m-1\ge0\Leftrightarrow m\ge1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2+2m-2=16\)
\(\Leftrightarrow0m=16-4\Leftrightarrow0m=12\) ( pt này vô nghiệm )
+) nếu \(m-1< 0\Leftrightarrow m< 1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2-2m+2=16\)
\(\Leftrightarrow-4m=16-8\)
\(\Leftrightarrow-4m=8\)
\(\Leftrightarrow m=-2\) ( TM \(m< 1\) )
vậy \(m=-2\) là giá trị cần tìm
\(\Delta'=m^2-\left(m+4\right)\left(m+1\right)^2\ge0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{\left(m+1\right)^2}\left(1\right)\\x_1x_2=\dfrac{m+4}{\left(m+1\right)^2}\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)^2=\dfrac{2m}{x_1+x_2}\\\left(m+1\right)^2=\dfrac{m+4}{x_1x_2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2m}{x_1+x_2}=\dfrac{m+4}{x_1x_2}\Leftrightarrow2mx_1x_2=\left(m+4\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow2mx_1x_2=m\left(x_1+x_2\right)+4\left(x_1+x_2\right)\)
\(\Leftrightarrow m\left(2x_1x_2-x_1-x_2\right)=4\left(x_1+x_2\right)\)
\(\Leftrightarrow m=\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}\) (3)
Thay m từ (3) vào (1) (hoặc (2) đều được) ta có:
\(x_1+x_2=\dfrac{\dfrac{8\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}}{\left(\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_1}+1\right)^2}\)
\(\Leftrightarrow\left(\dfrac{3\left(x_1+x_2\right)+2x_1x_2}{2x_1x_2-x_1-x_2}\right)^2=\dfrac{8}{2x_1x_2-x_1-x_2}\)
\(\Leftrightarrow\left(3x_1+3x_2+2x_1x_2\right)^2=8\left(2x_1x_2-x_1-x_2\right)\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
2/ Gọi pt cần tìm có 2 nghiệm \(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2}\\x_4=\dfrac{x_2}{x_1}\end{matrix}\right.\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\\x_3x_4=\dfrac{x_1}{x_2}.\dfrac{x_2}{x_1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}-2=\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\\x_3x_4=1\end{matrix}\right.\)
Theo Viet đảo, \(x_3;x_4\) là nghiệm của pt:
\(x^2-\left(\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\right)x+1=0\)
Nếu thích bạn có thể biến đổi và rút gọn cái đống trong ngoặc kia cho gọn hơn :D
thanks bạn nhìu