Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b = c/d => a/c=b/d
Đặt a/c=b/d = k
=> a=ck ; b=dk
Khi đó : (a/c)n = kn
an+bn/cn+dn = cnkn+dnkn/cn+dn = kn.(cn+dn)/cn+dn = k^n
=> (a/c)n = an+bn/cn+dn
=> ĐPCM
k mk nha
Câu 1:
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Câu 2:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)
\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)
..............
\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)
Nhân các vế (1),(2)....(2017) ta được:
\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)
Vậy...
Câu 3:
\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)
\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)
\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)
\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)
Đến đây thfi làm giống câu 2
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{\left(bk\right)^n+b^n}{\left(dk\right)^n+d^n}=\frac{\left(bk\right)^n-b^n}{\left(dk\right)^n-d^n}\)\(=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}\)
Xét VT \(\frac{a^n+b^n}{c^n+d^n}=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^n\left(k^n+1\right)}{d^n\left(k^n+1\right)}=\frac{b^n}{d^n}\left(1\right)\)
Xét VP \(\frac{a^n-b^n}{c^n-d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}=\frac{b^n\left(k^n-1\right)}{d^n\left(k^n-1\right)}=\frac{b^n}{d^n}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
a) Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
b) Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Leftrightarrow\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có:
\(\frac{a}{d}=\frac{bk}{d}=\frac{bkk}{dk}=\frac{bk^2}{c}=\frac{b.k^2.k}{ck}=\frac{b.k^3}{b}=k^3\) (1)
\(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\left[\frac{k\left(b+c+d\right)}{b+c+d}\right]^3=k^3\) (2)
Từ (1) và (2) suy ra \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\Leftrightarrow\frac{a^n}{c^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n+b^n-a^n}{c^n+d^n-c^n}=\frac{b^n}{d^n}\)
\(\Leftrightarrow\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\)
Từ đó suy ra đpcm.
Áp dụng t/c dãy tỉ số bằng nhau, ta có: \(\left(\frac{a}{c}^n\right)=\frac{a^n+b^n}{c^n+d^n}=\frac{\left(a^n+b^n\right)-a^n}{\left(c^n+d^n\right)-c^n}=\frac{b^n}{d^n}\)
=> \(\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)