\(\left\{{}\begin{matrix}x-my=m\\mx+y=1\end{matrix}\right.\). Tìm giá trị của m để hệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

12 tháng 1 2019

Chia động từ trong ngoặc:

1. I will give you my decision as soon as I (interview)interview all the applicants.

2.During my childhood, I (live)have lived in the countryside for 5 years.

3. As soon as I (graduate)graduate, I (return)will return to my hometown.

4. Next year, my sister (be)will be a teacher.

5. I get used to (stay)staying up late.

12 tháng 1 2019

Cảm ơn nha

Bài 1 cho hệ \(\left\{{}\begin{matrix}x+my=2\\mx+y=m+1\end{matrix}\right.\) a. chứng tỏ rằng \(\forall m\ne\pm1\)hệ luôn có nghiệm duy nhất b. tìm giá trị của m để hệ có nghiệm (x;y) thỏa mãn x+y <0 c. với giá trị nguyên nào của m thì hệ có nghiệm nguyên duy nhất Bài 2 cho hệ \(\left\{{}\begin{matrix}\left(m+1\right)x-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\) \(\forall m\in R\) a. giải hệ khi m=-3 b. tìm...
Đọc tiếp

Bài 1

cho hệ \(\left\{{}\begin{matrix}x+my=2\\mx+y=m+1\end{matrix}\right.\)

a. chứng tỏ rằng \(\forall m\ne\pm1\)hệ luôn có nghiệm duy nhất

b. tìm giá trị của m để hệ có nghiệm (x;y) thỏa mãn x+y <0

c. với giá trị nguyên nào của m thì hệ có nghiệm nguyên duy nhất

Bài 2

cho hệ \(\left\{{}\begin{matrix}\left(m+1\right)x-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\) \(\forall m\in R\)

a. giải hệ khi m=-3

b. tìm điều kiện của m để hệ phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó

Bài 3

cho hệ \(\left\{{}\begin{matrix}-m^2x+4y=m\\-x+2y=2\sqrt{2}\end{matrix}\right.\) (1)

a. giải hệ khi m=1 (2)

b. với giá trị nào của m thì hệ phương trình có nghiệm duy nhất

c. tìm giá trị của m để hai đường thẳng (1) (2) của hệ cắt nhau tại một điểm thuộc góc phần tư thứ II của hệ trục Oxy

0
7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).

25 tháng 3 2020
https://i.imgur.com/k7BZe8R.jpg
25 tháng 3 2020

Xét m = 0, ta có: x = 1; y = 0 (không thỏa mãn)

Xét \(m\ne0\), để hệ vô nghiệm thì:

\(\frac{1}{m}=\frac{m}{-1}\ne\frac{1}{-m}\). Điều này không thể xảy ra nên hệ luôn có nghiệm. Dễ tìm được nghiệm của hệ là:

\(x=\frac{1-m^2}{m^2+1};y=\frac{2m}{m^2+1}\)

Để \(x< 1;y< 1\) thì:

\(\left\{{}\begin{matrix}\frac{1-m^2}{m^2+1}< 1\\\frac{2m}{m^2+1}< 1\end{matrix}\right.\)\(\Leftrightarrow m>1\)

Vậy ....