\(\left\{{}\begin{matrix}a,b,c>0\\7a+6b+5c\le24\end{matrix}\right.\)

cmr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Đề sai. Thế a = c = 1; b = 2 vô là thấy nó sai nhé

11 tháng 8 2017

Đề sai!

Có thể thay a=b=0.5; b=3.5

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
10 tháng 8 2017

Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Lợi dụng BĐT Cauchy-Schwarz tao cso:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)

Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:

\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)

10 tháng 8 2017

Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)

Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\le\sqrt{9}=3\le a^2+b^2+c^2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)

\(=4\left(a^2+b^2+c^2\right)=VP^2\)

Xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 1:

Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)

Khi đó hệ PT trở thành:

\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)

Có: \(a^4+b^4=81\)

\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)

\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)

\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)

\(\Leftrightarrow 2a^2b^2-36ab=0\)

\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)

Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$

$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$

Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$

Dễ thấy pt này vô nghiệm nên loại

Vậy......

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 2:

ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)

HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$

$\Rightarrow (a,b)=(2,1); (1,2)$

Nếu $(a,b)=(2,1)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)

$y=1\rightarrow x=3$

$y=-1\rightarrow y=5$

Nếu $(a,b)=(1,2)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)

\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)

Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$

Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$

Vậy...........

NV
5 tháng 5 2019

a/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)

Phương trình trở thành:

\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)

\(\Leftrightarrow x^2-16=x^2-16x+64\)

\(\Rightarrow x=5\)

b/ \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:

\(a+3b=3+ab\)

\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)

\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)

NV
5 tháng 5 2019

Bài 2:

a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)

b/Cộng vế với vế:

\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)

\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)

\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm