K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Lời giải:

Đặt \((a+1,b+1,c+1)=(x,y,z)\Rightarrow (a,b,c)=(x-1,y-1,z-1)\)

Khi đó:
\(ab+bc+ac+abc=2\)

\(\Leftrightarrow (x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)+(x-1)(y-1)(z-1)=2\)

\(\Leftrightarrow xyz-(x+y+z)+2=2\Leftrightarrow xyz=x+y+z\)

Vậy bài toán trở thành: Cho $x,y,z>0$ thỏa mãn \(x+y+z=xyz\)

Tìm max \(P=\sum \frac{x}{x^2+1}\)

----------------------------------

Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)

\(\Rightarrow x(x+y+z)+yz=yz(x^2+1)\)

\(\Leftrightarrow (x+y)(x+z)=yz(x^2+1)\Rightarrow x^2+1=\frac{(x+y)(x+z)}{yz}\)

Do đó: \(\frac{x}{x^2+1}=\frac{x}{\frac{(x+y)(x+z)}{yz}}=\frac{xyz}{(x+y)(x+z)}\)

\(\Rightarrow P=\sum \frac{x}{x^2+1}=\sum \frac{xyz}{(x+y)(x+z)}=\frac{2xyz(x+y+z)}{(x+y)(y+z)(x+z)}\)

Theo BĐT AM-GM:

\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\)

\(\geq (x+y+z).(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}=\frac{8}{9}(x+y+z)(xy+yz+xz)\)

\(\Rightarrow P\leq \frac{2xyz(x+y+z)}{\frac{8}{9}(x+y+z)(xy+yz+xz)}=\frac{9}{4}.\frac{xyz}{xy+yz+xz}(*)\)

Mà: \((xy+yz+xz)^2\geq 3xyz(x+y+z)=3(xyz)^2\)

\(\Rightarrow xy+yz+xz\geq \sqrt{3}xyz(**)\)

Từ \((*);(**)\Rightarrow P\leq \frac{9}{4}.\frac{1}{\sqrt{3}}=\frac{3\sqrt{3}}{4}\). Vậy \(P_{\max}=\frac{3\sqrt{3}}{4}\)

1. a) \(\left\{{}\begin{matrix}x,y,z0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

15 tháng 12 2018

#Max: Giả sử z=max{x, y, z} \(\Rightarrow z\ge2\). Ta chứng minh BĐT sau:

\(x^2+y^2+z^2+xyz\le\dfrac{\left(x+y\right)^2}{2}+z^2+\dfrac{\left(x+y\right)^2z}{4}\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{4}\left(z-2\right)\ge0\) ( đúng ) (*)

Do đó \(VT\le\dfrac{\left(6-z\right)^2}{2}+z^2+\dfrac{z\left(6-z\right)^2}{4}=f\left(z\right)\) với \(z\in\left[2;3\right]\)

\(f'\left(z\right)=\left(6-z\right).\left(-1\right)+2z+\dfrac{1}{4}.\left[\left(6-z\right)^2+z.2\left(z-6\right)\right]\)

\(=\dfrac{3}{4}z^2-3z+3=\dfrac{3}{4}\left(z-2\right)^2\ge0\).Suy ra \(f\left(z\right)\le f\left(3\right)=\dfrac{81}{4}\)

Dấu = đạt được tại \(x=y=\dfrac{3}{2},z=3\) và các hoán vị

#Min: Để ý (*), ta giả sử z=Min{x, y, z} thì \(z\le2\). Do đó ta lại có

\(VT\ge f\left(z\right)\) với \(z\in\left[0;2\right]\). Vì f(z) vẫn đồng biến / R nên min sẽ đạt được tại z=0 và bằng 18

Dấu = đạt được tại x=y=3, z=0 và các hoán vị

4 tháng 11 2017

Áp dụng BĐT B.C.S ta có

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}\)

mặt khác do \(a+b+c\le3\Rightarrow\dfrac{9}{\left(a+b+c\right)^2}\ge1\)

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge1\)(*)

ta lại có \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le3\)

\(\Rightarrow\dfrac{2007}{ab+bc+ac}\ge\dfrac{2007}{3}=669\)(**)

lấy (*)+(**) vế theo vế ta được

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ac}\ge669+1=670\left(dpcm\right)\)

12 tháng 5 2017

Đặt \(\dfrac{b}{c}=x\)

Ta có: \(\left\{{}\begin{matrix}ab+bc=2c^2\\2a\le c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.x+x=2\\\dfrac{a}{c}\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{2-x}{x}\\\dfrac{2-x}{x}\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{2-x}{x}\\x\ge\dfrac{4}{3}\end{matrix}\right.\)

Ta lại có:

\(\dfrac{a}{a-b}+\dfrac{b}{b-c}+\dfrac{c}{c-a}=\dfrac{\dfrac{a}{c}}{\dfrac{a}{c}-\dfrac{b}{c}}+\dfrac{\dfrac{b}{c}}{\dfrac{b}{c}-1}+\dfrac{1}{1-\dfrac{a}{c}}\)

\(=\dfrac{\dfrac{2-x}{x}}{\dfrac{2-x}{x}-x}+\dfrac{x}{x-1}+\dfrac{1}{1-\dfrac{2-x}{x}}\)

\(=\dfrac{3x^2+8x-4}{2x^2+2x-4}\)

\(=\dfrac{27}{5}+\dfrac{39x^2+14x-88}{2x^2+2x-4}=\dfrac{27}{5}+\dfrac{\left(3x-4\right)\left(13x+22\right)}{2\left(x-1\right)\left(x+2\right)}\ge\dfrac{27}{5}\)

Vậy GTNN là \(\dfrac{27}{5}\) dấu = xảy ra khi \(x=\dfrac{4}{3}\)

12 tháng 5 2017

MAX bác !!

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

8 tháng 1 2020

buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,

@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng

Mn giúp e vs ạ! Cần gấp ạ!

Thanks nhiều lắm ạ!

12 tháng 1 2020

3a hình như là đề thi Phan Bội Châu, năm nào thì em ko nhớ.

8 tháng 8 2019

2a) Có cách này nhưng ko chắc!

\(A\ge\frac{4x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}=\frac{3x^2}{y^2+z^2}+\left(\frac{x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}\right)\)

\(\ge\frac{3\left(y^2+z^2\right)}{y^2+z^2}+2\sqrt{\frac{x^2}{y^2+z^2}.\frac{y^2+z^2}{x^2}}=3+2=5\)

Đẳng thức xảy ra khi x2 = y2 + z2????

8 tháng 8 2019

tth, ?Amanda?, @Nk>↑@, buithianhtho, Phạm Hoàng Lê Nguyên,

Akai Haruma, Aki Tsuki, @Nguyễn Việt Lâm, @Trần Thanh Phương

Giúp mk vs!