Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 6ab = 36 - (a - b)2 \(\le\) 36 + 0 => ab \(\le\) 36/6 = 6
=> GTLN của x = ab là 6
Dấu "=" xảy ra khi a = b = \(\sqrt{6}\) hoặc a = b = - \(\sqrt{6}\)
Ta có \(\left(a-b\right)^2+6ab=36\).
\(\Rightarrow a^2-2ab+b^2+6ab=36=a^2+4ab+b^2\)
\(=a^2+2ab+b^2+2ab=\left(a+b\right)^2+2ab=36.\)
Có x = a.b. Để x lớn nhất thì a.b lớn nhất \(\Rightarrow\) 2ab lớn nhất
Mà \(\left(a+b\right)^2+2ab=36\Rightarrow\left(a+b\right)^2\)bé nhất.
Có \(\left(a+b\right)^2\ge0\Rightarrow min\left(a+b\right)^2\)= 0 \(\Rightarrow2ab=36\Rightarrow ab=18\) hay x = 18.
Vậy x lớn nhất là 18.
Ta có:
\(\left(a-b\right)^2+6ab=36\)
\(\Rightarrow6ab=36-\left(a-b\right)^2\le36+0\)
\(\Rightarrow ab\le\dfrac{36}{6}=6\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{matrix}\right.\)
Vậy \(MAX_{x=ab}=6\)
Có x=ab=[36−(a−b)2]:6≤6 do (a−b)2≥0 và x=6 khi và chỉ khi a=b=6 hoặc a=b=−6.
Vậy giá trị lớn nhất của x bằng 6 khi và chỉ khi a=b= \(\sqrt{6}\)hoặc a=b=\(-\sqrt{6}\).
Ngoài cách đó bạn còn có thể làm như sau :
Ta có: (a-b)2 + 6ab = 36
\(\Rightarrow\)6a=36b-(a-b)2\(\le\) 36+0\(\Rightarrow\) ab\(\le\)\(\dfrac{36}{6}=6\)
\(\Rightarrow\) Giá trị lớn nhất của: x=ab là 6
Dấu "=" chỉ xảy ra khi : \(a=b=\sqrt{6}\) hoặc \(a=b=-\sqrt{6}\)
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
a)Vì |x-1/2|≥0
|x-1/2|-3≥0-3
A=|x-1/2|-3≥-3
=>A≥-3
Dấu ''='' xảy ra khi
x-1/2=0
x=0+1/2
x=1/2
Vậy GTNN của biểu thức đã cho là -3 khi x=1/2
b)
Vì |x-4|≥0
-|x-4|≤0
=>2/3-|x-4|≤2/3-0
2/3-|x-4|≤2/3
=>B=2/3-|x-4|≤2/3
B≤2/3
Dấu ''='' xảy ra khi
x-4=0
x=0+4
x=4
Vậy GTLN của biểu thức là 2/3 khi x=4
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
=> 6ab = 36 - ( a - b ) ^2 < 36 + 0 => ab < 36/6
=> GTLN của x = ab là 6
Dấu " = " xảy ra khi a=b = \(\sqrt{6}\)hoặc a = b = -\(\sqrt{6}\)
K mk nha <3